首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7005篇
  免费   503篇
  国内免费   12篇
电工技术   83篇
综合类   4篇
化学工业   1897篇
金属工艺   92篇
机械仪表   166篇
建筑科学   256篇
矿业工程   14篇
能源动力   266篇
轻工业   1505篇
水利工程   88篇
石油天然气   32篇
无线电   383篇
一般工业技术   1029篇
冶金工业   392篇
原子能技术   45篇
自动化技术   1268篇
  2024年   12篇
  2023年   68篇
  2022年   199篇
  2021年   374篇
  2020年   234篇
  2019年   295篇
  2018年   298篇
  2017年   289篇
  2016年   297篇
  2015年   239篇
  2014年   349篇
  2013年   565篇
  2012年   486篇
  2011年   556篇
  2010年   400篇
  2009年   378篇
  2008年   343篇
  2007年   329篇
  2006年   227篇
  2005年   177篇
  2004年   185篇
  2003年   134篇
  2002年   128篇
  2001年   89篇
  2000年   84篇
  1999年   71篇
  1998年   166篇
  1997年   112篇
  1996年   63篇
  1995年   68篇
  1994年   41篇
  1993年   35篇
  1992年   27篇
  1991年   28篇
  1990年   22篇
  1989年   24篇
  1988年   14篇
  1987年   5篇
  1986年   9篇
  1985年   13篇
  1984年   12篇
  1983年   9篇
  1982年   8篇
  1981年   6篇
  1980年   5篇
  1979年   4篇
  1978年   6篇
  1977年   11篇
  1976年   11篇
  1975年   4篇
排序方式: 共有7520条查询结果,搜索用时 156 毫秒
81.
The peroxisome is a single-membrane subcellular compartment present in almost all eukaryotic cells from simple protists and fungi to complex organisms such as higher plants and animals. Historically, the name of the peroxisome came from a subcellular structure that contained high levels of hydrogen peroxide (H2O2) and the antioxidant enzyme catalase, which indicated that this organelle had basically an oxidative metabolism. During the last 20 years, it has been shown that plant peroxisomes also contain nitric oxide (NO), a radical molecule than leads to a family of derived molecules designated as reactive nitrogen species (RNS). These reactive species can mediate post-translational modifications (PTMs) of proteins, such as S-nitrosation and tyrosine nitration, thus affecting their function. This review aims to provide a comprehensive overview of how NO could affect peroxisomal metabolism and its internal protein-protein interactions (PPIs). Remarkably, many of the identified NO-target proteins in plant peroxisomes are involved in the metabolism of reactive oxygen species (ROS), either in its generation or its scavenging. Therefore, it is proposed that NO is a molecule with signaling properties with the capacity to modulate the peroxisomal protein-protein network and consequently the peroxisomal functions, especially under adverse environmental conditions.  相似文献   
82.
Supramolecular peptide hydrogels are gaining increased attention, owing to their potential in a variety of biomedical applications. Their physical properties are similar to those of the extracellular matrix (ECM), which is key to their applications in the cell culture of specialized cells, tissue engineering, skin regeneration, and wound healing. The structure of these hydrogels usually consists of a di- or tripeptide capped on the N-terminus with a hydrophobic aromatic group, such as Fmoc or naphthalene. Although these peptide conjugates can offer advantages over other types of gelators such as cross-linked polymers, they usually possess the limitation of being particularly sensitive to proteolysis by endogenous proteases. One of the strategies reported that can overcome this barrier is to use a peptidomimetic strategy, in which natural amino acids are switched for non-proteinogenic analogues, such as D-amino acids, β-amino acids, or dehydroamino acids. Such peptides usually possess much greater resistance to enzymatic hydrolysis. Peptides containing dehydroamino acids, i.e., dehydropeptides, are particularly interesting, as the presence of the double bond also introduces a conformational restraint to the peptide backbone, resulting in (often predictable) changes to the secondary structure of the peptide. This review focuses on peptide hydrogels and related nanostructures, where α,β-didehydro-α-amino acids have been successfully incorporated into the structure of peptide hydrogelators, and the resulting properties are discussed in terms of their potential biomedical applications. Where appropriate, their properties are compared with those of the corresponding peptide hydrogelator composed of canonical amino acids. In a wider context, we consider the presence of dehydroamino acids in natural compounds and medicinally important compounds as well as their limitations, and we consider some of the synthetic strategies for obtaining dehydropeptides. Finally, we consider the future direction for this research area.  相似文献   
83.
Candida albicans (CA) infections have been associated with psoriasis onset or disease flares. However, the integrated immune response against this fungus is still poorly characterized in psoriasis. We studied specific immunoglobulins in plasma and the CA response in cocultures of circulating memory CD45RA cutaneous lymphocyte antigen (CLA)+/− T cell with autologous epidermal cells from plaque and guttate psoriasis patients (cohort 1, n = 52), and also healthy individuals (n = 17). A complete proteomic profile was also evaluated in plaque psoriasis patients (cohort 2, n = 114) regarding their anti-CA IgA levels. Increased anti-CA IgA and IgG levels are present in the plasma from plaque but not guttate psoriasis compared to healthy controls. CA cellular response is confined to CLA+ T cells and is primarily Th17. The levels of anti-CA IgA are directly associated with CLA+ Th17 response in plaque psoriasis. Proteomic analysis revealed distinct profiles in psoriasis patients with high anti-CA IgA. C-C motif chemokine ligand 18, chitinase-3-like protein 1 and azurocidin were significantly elevated in the plasma from plaque psoriasis patients with high anti-CA levels and severe disease. Our results indicate a mechanism by which Candida albicans exposure can trigger a clinically relevant IL-17 response in psoriasis. Assessing anti-CA IgA levels may be useful in order to evaluate chronic psoriasis patients.  相似文献   
84.
The initial transient high-temperature oxidation stage for binary alloys forming the most-stable oxide has been examined by means of a numerical procedure based on the finite-difference method. At variance with previous models, the present treatment takes into account the effect of the rate of the reaction at the scale/gas interface over the corrosion kinetics. The calculations concerning the transient stage are developed either using the general parabolic rate law to represent the overall scaling kinetics or using the rate law of the reaction at the scale/gas interface as a boundary condition without imposing any particular rate law to the overall process. A correct analysis of the oxidation behavior of binary alloys during the transient stage must take into account the kinetics effect of the rate of the surface reaction. The concentration of the most-reactive element at the alloy/scale interface changes regularly with time, decreasing gradually from the initial bulk value to its final steady-state value. The present results are in good agreement with those obtained by means of an approximate analytical model developed previously.  相似文献   
85.
Salinity provokes an imbalance of vegetative to generative growth, thus impairing crop productivity. Unlike breeding strategies, grafting is a direct and quick alternative to improve salinity tolerance in horticultural crops, through rebalancing plant development. Providing that hormones play a key role in plant growth and development and stress responses, we hypothesized that rootstock-mediated reallocation of vegetative growth and yield under salinity was associated with changes in the hormonal balance. To test this hypothesis, the hybrid pepper variety (Capsicum annuum L. “Gacela F1”) was either non-grafted or grafted onto three commercial rootstocks (Creonte, Atlante, and Terrano) and plants were grown in a greenhouse under control (0 mM NaCl) and moderate salinity (35 mM NaCl) conditions. Differential vegetative growth versus fruit yield responses were induced by rootstock and salinity. Atlante strongly increased shoot and root fresh weight with respect to the non-grafted Gacela plants associated with improved photosynthetic rate and K+ homeostasis under salinity. The invigorating effect of Atlante can be explained by an efficient balance between cytokinins (CKs) and abscisic acid (ABA). Creonte improved fruit yield and maintained the reproductive to vegetative ratio under salinity as a consequence of its capacity to induce biomass reallocation and to avoid Na+ accumulation in the shoot. The physiological responses associated with yield stability in Creonte were mediated by the inverse regulation of CKs and the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. Finally, Terrano limited the accumulation of gibberellins in the shoot thus reducing plant height. Despite scion compactness induced by Terrano, both vegetative and reproductive biomass were maintained under salinity through ABA-mediated control of water relations and K+ homeostasis. Our data demonstrate that the contrasting developmental and physiological responses induced by the rootstock genotype in salinized pepper plants were critically mediated by hormones. This will be particularly important for rootstock breeding programs to improve salinity tolerance by focusing on hormonal traits.  相似文献   
86.
Targeting the innate immune system has attracted attention with the development of anti- CD47 antibodies. Anti-CD47 antibodies block the inhibition of the phagocytic activity of macrophages caused by the up-regulation of CD47 on tumor cells. In this study, public genomic data was used to identify genes highly expressed in breast tumors with elevated CD47 expression and analyzed the association between the presence of tumor immune infiltrates and the expression of the selected genes. We found that 142 genes positively correlated with CD47, of which 83 predicted favorable and 32 detrimental relapse-free survival (RFS). From those associated with favorable RFS, we selected the genes with immunologic biological functions and defined a CD47-immune signature composed of PTPRC, HLA-E, TGFBR2, PTGER4, ETS1, and OPTN. In the basal-like and HER2+ breast cancer subtypes, the expression of the CD47-immune signature predicted favorable outcome, correlated with the presence of tumor immune infiltrates, and with gene expression signatures of T cell activation. Moreover, CD47 up-regulated genes associated with favorable survival correlated with pro-tumoral macrophages. In summary, we described a CD47-immune gene signature composed of 6 genes associated with favorable prognosis, T cell activation, and pro-tumoral macrophages in breast cancer tumors expressing high levels of CD47.  相似文献   
87.
Iron (Fe) and phosphorus (P) are two essential elements for plant growth. Both elements are abundant in soils but with poor availability for plants, which favor their acquisition by developing morphological and physiological responses in their roots. Although the regulation of the genes related to these responses is not totally known, ethylene (ET) and nitric oxide (NO) have been involved in the activation of both Fe-related and P-related genes. The common involvement of ET and NO suggests that they must act in conjunction with other specific signals, more closely related to each deficiency. Among the specific signals involved in the regulation of Fe- or P-related genes have been proposed Fe-peptides (or Fe ion itself) and microRNAs, like miR399 (P), moving through the phloem. These Fe- or P-related phloem signals could interact with ET/NO and confer specificity to the responses to each deficiency, avoiding the induction of the specific responses when ET/NO increase due to other nutrient deficiencies or stresses. Besides the specificity conferred by these signals, ET itself could confer specificity to the responses to Fe- or P-deficiency by acting through different signaling pathways in each case. Given the above considerations, there are preliminary results suggesting that ET could regulate different nutrient responses by acting both in conjunction with other signals and through different signaling pathways. Because of the close relationship among these two elements, a better knowledge of the physiological and molecular basis of their interaction is necessary to improve their nutrition and to avoid the problems associated with their misuse. As examples of this interaction, it is known that Fe chlorosis can be induced, under certain circumstances, by a P over- fertilization. On the other hand, Fe oxides can have a role in the immobilization of P in soils. Qualitative and quantitative assessment of the dynamic of known Fe- and P-related genes expression, selected ad hoc and involved in each of these deficiencies, would allow us to get a profound knowledge of the processes that regulate the responses to both deficiencies. The better knowledge of the regulation by ET of the responses to these deficiencies is necessary to properly understand the interactions between Fe and P. This will allow the obtention of more efficient varieties in the absorption of P and Fe, and the use of more rational management techniques for P and Fe fertilization. This will contribute to minimize the environmental impacts caused by the use of P and Fe fertilizers (Fe chelates) in agriculture and to adjust the costs for farmers, due to the high prices and/or scarcity of Fe and P fertilizers. This review aims to summarize the latest advances in the knowledge about Fe and P deficiency responses, analyzing the similarities and differences among them and considering the interactions among their main regulators, including some hormones (ethylene) and signaling substances (NO and GSNO) as well as other P- and Fe-related signals.  相似文献   
88.
89.
The ability of a SS 316L surface wetted with a thin electrolyte layer to serve as an effective cathode for an active localized corrosion site was studied computationally. The dependence of the total net cathodic current, Inet, supplied at the repassivation potential Erp (of the anodic crevice) on relevant physical parameters including water layer thickness (WL), chloride concentration ([Cl]) and length of cathode (Lc) were investigated using a three-level, full factorial design. The effects of kinetic parameters including the exchange current density (io,c) and Tafel slope (βc) of oxygen reduction, the anodic passive current density (ip) (on the cathodic surface), and Erp were studied as well using three-level full factorial designs of [Cl] and Lc with a fixed WL of 25 μm. The study found that all the three parameters WL, [Cl] and Lc as well as the interactions of Lc × WL and Lc × [Cl] had significant impact on Inet. A five-factor regression equation was obtained which fits the computation results reasonably well, but demonstrated that interactions are more complicated than can be explained with a simple linear model. Significant effects on Inet were found upon varying either io,c, βc, or Erp, whereas ip in the studied range was found to have little impact. It was observed that Inet asymptotically approached maximum values (Imax) when Lc increased to critical minimum values. Imax can be used to determine the stability of coupled localized corrosion and the critical Lc provides important information for experimental design and corrosion protection.  相似文献   
90.
Gutta‐percha cone is the most widely used material for root canal filling. The in vivo aging of this cone focus on the degradation of its main organic component, trans‐1,4‐polyisoprene, was studied. Aged cones (25 samples) from 2 to 30 years of root canal filling were extracted from different patients in the occasion of retreatment by mechanical way. The information about the aging time was given by the patients. Gel‐permeation chromatography (GPC) and infrared spectroscopy (FTIR) were the analytical techniques used. Polyisoprene degrades with time of aging, but in a slow process. Decrease in polymer molar mass from 5.7 × 105 to 1.7 × 105 g/mol was observed in polyisoprene from cone after 30 years of root canal filling and inside a noninfected tooth. In tooth with caries and periodontal infection, the decrease in molar mass is higher (4.6 × 104 g/mol in cone with 10 years of aging). The production of carbonyl and hydroxyl groups in the aged material indicates that the process is oxidative, even in closed teeth. In these cases, the oxygen could be provided from tissue fluid. The degradation mechanism is complex and depends on many factors, besides time of root canal filling. The dental problem caused by the aging could be the production and migration of cytotoxic substances to periodontal ligament and the reduction on the canal sealing property due to the polymer weight loss. Both of them could contribute to the root canal treatment failure. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100:4082–4088, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号