CD38 is a transmembrane glycoprotein expressed by T-cells. It has been reported that patients with systemic lupus erythematosus (SLE) showed increased CD38+CD25+ T-cells correlating with immune activation and clinical signs. Contrariwise, CD38 deficiency in murine models has shown enhanced autoimmunity development. Recent studies have suggested that CD38+ regulatory T-cells are more suppressive than CD38− regulatory T-cells. Thus, we have suggested that CD38 overexpression in SLE patients could play a role in regulating immune activation cells instead of enhancing it. This study found a correlation between CD38 with FoxP3 expression and immunosuppressive molecules (CD69, IL-10, CTLA-4, and PD-1) in T-cells from lupus-prone mice (B6.MRL-Faslpr/J). Additionally, B6.MRL-Faslpr/J mice showed a decreased proportion of CD38+ Treg cells regarding wild-type mice (WT). Furthermore, Regulatory T-Cells (Treg cells) from CD38-/- mice showed impairment in expressing immunosuppressive molecules and proliferation after stimulation through the T-cell receptor (TCR). Finally, we demonstrated an increased ratio of IFN-γ/IL-10 secretion in CD38-/- splenocytes stimulated with anti-CD3 compared with the WT. Altogether, our data suggest that CD38 represents an element in maintaining activated and proliferative Treg cells. Consequently, CD38 could have a crucial role in immune tolerance, preventing SLE development through Treg cells. 相似文献
This article reports an aramid pulp (AP) treated with two ionic liquids (IL), namely 1-n-butyl-3-methylimidazolium chloride (C4.Cl) and 1-carboxymethyl-3-methylimidazolium chloride (HO2C), and its use as a filler in reinforced rigid polyurethane foams (RPUF). The RPUF were incorporated with the treated AP at three weight fractions (c.a. 0.1, 0.5, and 1.0 wt%) and were produced by the free rising method. The results showed that the studied IL promoted a better interaction between the AP and the RPUF system, which increased the overall reactivity, imparting a higher cell anisotropy. This also yielded a positive effect in mechanical properties and thermal stability of the RPUF. Compared to the neat RPUF, outstanding increases of approximately 50 and 20% were achieved in compressive modulus and strength, respectively. In all, the use of IL promoted increased compatibility between matrix and reinforcement, especially that HO2C IL. 相似文献
This work aimed to examine the performance of the hybrid sintering of clay ceramic in a microwave furnace, compared to the sintering process in a conventional furnace. The raw materials were subjected to X-ray fluorescence, loss on ignition (LOI), X-ray diffraction, particle size distribution, real specific mass, and thermogravimetric analyses. The red clay ceramic mass was prepared, extruded, pre-sintered in a conventional furnace at 600°C/60 min, and sintered at temperatures between 700 °C and 1100 °C. The sintering conventional (resistive oven) was carried out for 60 min with a heating rate of 10°C/min. In the microwave furnace, the sintering times were 5, 10, and 15 min, with a heating rate of 50°C/min, with a sintering chamber coated with silicon carbide (susceptor). The sintered specimens were characterized according to linear shrinkage, water absorption, apparent porosity, apparent specific mass, X-ray diffraction, Raman spectroscopy analysis, spectroscopy analysis in the ultraviolet and visible regions, microhardness, and scanning electron microscopy. The results showed that microwave sintering promoted an increase in the microhardness and apparent specific mass, and reduction in water absorption and apparent porosity values, due to greater densification in the microstructure. The best results occurred for specimens sintered at 1100°C. 相似文献
This work presents a solution-phase approach for the “one pot” synthesis of polysilane-gold nanorods. The process starts by the reduction of HAuCl4 to Auo with a solution of poly[diphenylsilane-co-methyl(H)silane] cooled to 4 °C. The formed small Au nanoparticles (5–15 nm diameter) serve further as seeds for the heterogeneous nucleation and anisotropic growth that takes place at 25 °C and yields crystalline needle-like polymer–gold nanostructures. The evolution of the small spherical nanoparticles to nanorods with length/width aspect ratios up to 103 has been proved by UV–Vis spectroscopy, polarized light microscopy and AFM. Further insights on the growth mechanism were obtained by SEM, DLS and TEM. 相似文献
The role of La2O3 loading in Pd/Al2O3-La2O3 prepared by sol–gel on the catalytic properties in the NO reduction with H2 was studied. The catalysts were characterized by N2 physisorption, temperature-programmed reduction, differential thermal analysis, temperature-programmed oxidation and temperature-programmed desorption of NO.
The physicochemical properties of Pd catalysts as well as the catalytic activity and selectivity are modified by La2O3 inclusion. The selectivity depends on the NO/H2 molar ratio (GHSV = 72,000 h−1) and the extent of interaction between Pd and La2O3. At NO/H2 = 0.5, the catalysts show high N2 selectivity (60–75%) at temperatures lower than 250 °C. For NO/H2 = 1, the N2 selectivity is almost 100% mainly for high temperatures, and even in the presence of 10% H2O vapor. The high N2 selectivity indicates a high capability of the catalysts to dissociate NO upon adsorption. This property is attributed to the creation of new adsorption sites through the formation of a surface PdOx phase interacting with La2O3. The formation of this phase is favored by the spreading of PdO promoted by La2O3. DTA shows that the phase transformation takes place at temperatures of 280–350 °C, while TPO indicates that this phase transformation is related to the oxidation process of PdO: in the case of Pd/Al2O3 the O2 uptake is consistent with the oxidation of PdO to PdO2, and when La2O3 is present the O2 uptake exceeds that amount (1.5 times). La2O3 in Pd catalysts promotes also the oxidation of Pd and dissociative adsorption of NO mainly at low temperatures (<250 °C) favoring the formation of N2. 相似文献
Summary N,N-Bis(4-hydroxysalicylidene)ethylendiamine (salen) was attached to a poly[iodopropyl(methyl)-co-diphenylsilane)chain. Due to intermolecular crosslinking reactions, a high molecular weight polymer formation was observed. The resulted material was doped with metal cations through complexation reactions. The chemical structure of the polysilane-Schiff base metal complex was investigated by spectral analysis (IR, 1H-NMR, 13C-NMR, UV), thermogravimetric analysis (TGA) and gel permeation chromatography (GPC). 相似文献
The main goal of the present study was to evaluate the long-term effects of a perinatal palatable high-fat diet on the food
intake and cholesterol profile of adult rats. Male Wistar rats (aged 22 days) were divided into two groups according to their
mother’s diet during gestation and lactation (Cp, n = 10; pups from control mothers; and HLpn = 10; pups from mothers fed a palatable high-fat diet). At the 76th day, pups were housed individually for 14 days, and daily
food consumption was determined during a period of 6 days. Blood from 100-day-old rats was sampled by cardiac puncture. Fasting
(12 h) serum glucose, total cholesterol, LDL-C, HDL-C, triglycerides (TG), and VLDL-C levels were determined. The measurement
of food intake was higher in the animals submitted to a hyperlipidic diet during the perinatal period. Serum total cholesterol,
LDL-C, HDL-C, TG, VLDL-C and glycemia were increased in the HLp group compared to the control group. Our findings show that an early life environment with a high-fat diet can contribute
to metabolic disease in later life. 相似文献
The always increasing energy demand combined with the declining availability of fossil fuels is driving forces for the investigation of renewable energy sources. In this context, bioethanol is considered as one of the most appropriate solutions for short term gasoline substitution. Then, the motivation of this work is to propose a MINLP optimization model for a sustainable design and behavior analysis of sugar/ethanol supply chain (SC). A detailed model for ethanol plant design is embedded in the SC model, and therefore plant and SC designs are simultaneously obtained. Yeast production and residue recycles are taken into account in order to assess the environmental impact. The inclusion of sustainability issues in the model produces both economic and operative changes in SC and plant designs. The simultaneous optimization of these elements allows the evaluation of several compromises among design and process variables. These issues are highlighted throughout the evaluated studied cases. 相似文献
Antioxidant nutrient intake and the lesser formation of free radicals seem to contribute to chronic diseases. The aim of the
present study was to evaluate the intake profile of the main dietary antioxidants in a representative sample of the adult
Brazilian population and discuss the main consequences of a low intake of these micronutrients on overall health. 相似文献