首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1082篇
  免费   40篇
  国内免费   4篇
电工技术   21篇
综合类   2篇
化学工业   256篇
金属工艺   26篇
机械仪表   43篇
建筑科学   21篇
能源动力   74篇
轻工业   42篇
水利工程   22篇
无线电   117篇
一般工业技术   303篇
冶金工业   65篇
原子能技术   10篇
自动化技术   124篇
  2024年   3篇
  2023年   13篇
  2022年   33篇
  2021年   47篇
  2020年   41篇
  2019年   37篇
  2018年   60篇
  2017年   40篇
  2016年   43篇
  2015年   29篇
  2014年   40篇
  2013年   84篇
  2012年   54篇
  2011年   55篇
  2010年   54篇
  2009年   63篇
  2008年   45篇
  2007年   50篇
  2006年   31篇
  2005年   35篇
  2004年   23篇
  2003年   25篇
  2002年   12篇
  2001年   14篇
  2000年   16篇
  1999年   15篇
  1998年   9篇
  1997年   13篇
  1996年   14篇
  1995年   16篇
  1994年   16篇
  1993年   11篇
  1992年   5篇
  1991年   12篇
  1990年   3篇
  1989年   6篇
  1988年   6篇
  1987年   8篇
  1986年   2篇
  1985年   5篇
  1984年   10篇
  1983年   3篇
  1982年   4篇
  1981年   4篇
  1980年   4篇
  1979年   3篇
  1978年   2篇
  1973年   1篇
  1971年   3篇
  1970年   1篇
排序方式: 共有1126条查询结果,搜索用时 15 毫秒
61.
Heating value of biomass and biomass pyrolysis products   总被引:3,自引:0,他引:3  
K. Raveendran  Anuradda Ganesh 《Fuel》1996,75(15):1715-1720
Studies conducted on the heating value of various types of biomass components and their pyrolysis products such as char, liquids and gases are presented. Heating values of chars are comparable with those of lignite and coke; heating values of liquids are comparable with those of oxygenated fuels such as methanol and ethanol, which are much lower than those of petroleum fuels. Heating values of gases are comparable with those of producer gas or coal gas and are much lower than that of natural gas. It is also found that the heating values of products are functions of the initial composition of biomass; correlations are developed to express these. Also, correlations are developed which explain the influence of ash elements on heating values of the pyrolysis products and on percentage distribution of energy in the products.  相似文献   
62.
The usage of particulate reinforced metal matrix composite (MMC) is steadily increasing due to its properties such as high specific strength, high specific modulus and good wear resistance. Aluminium matrix composite (AMC) plays an important role to meet the above requirements. Effective utilization of AMC is based on not only its production but also on fabrication methods. Among AMCs, those based on particulate reinforcements are particularly attractive, due to their lower production costs. Aluminium matrix titanium carbide reinforced composite (Al–TiCp) was produced in an inert atmosphere by indigenously developed Modified Stir Casting Process with bottom pouring arrangement (3–7% TiC by weight). Friction stir welding process (FSW) is employed to make weld joints. The welding parameters such as axial force, welding speed, tool rotational speed, percentage TiC addition etc., and profile of the tool were considered for analysis. In this study, an attempt is made to predict ultimate tensile strength (UTS) of the welded joints using a mathematical model. The FSW specimens without any post-weld heat treatment belonging to a different set of parameters tested, exhibited a high joint efficiency (most of them ranging from 90% to 98%) with respect to the ultimate tensile strength of the base material AA6061. It was found from the analysis of the model that the tool pin profile and the welding speed have more significant effect on tensile strength.  相似文献   
63.
The present work deals with an ultrasonic type of wave propagation characteristics of monolayer graphene on silicon (Si) substrate. An atomistic model of a hybrid lattice involving a hexagonal lattice of graphene and surface atoms of diamond lattice of Si is developed to identify the carbon-silicon bond stiffness. Properties of this hybrid lattice model is then mapped into a nonlocal continuum framework. Equivalent force constant due to Si substrate is obtained by minimizing the total potential energy of the system. For this equilibrium configuration, the nonlocal governing equations are derived to analyze the ultrasonic wave dispersion based on spectral analysis. From the present analysis we show that the silicon substrate affects only the flexural wave mode. The frequency band gap of flexural mode is also significantly affected by this substrate. The results also show that, the silicon substrate adds cushioning effect to the graphene and it makes the graphene more stable. The analysis also show that the frequency bang gap relations of in-plane (longitudinal and lateral) and out-of-plane (flexural) wave modes depends not only on the y-direction wavenumber but also on nonlocal scaling parameter. In the nonlocal analysis, at higher values of the y-directional wavenumber, a decrease in the frequency band gap is observed for all the three fundamental wave modes in the graphene–silicon system. The atoms movement in the graphene due to the wave propagation are also captured for all the tree fundamental wave modes. The results presented in this work are qualitatively different from those obtained based on the local analysis and thus, are important for the development of graphene based nanodevices such as strain sensor, mass and pressure sensors, atomic dust detectors and enhancer of surface image resolution that make use of the ultrasonic wave dispersion properties of graphene.  相似文献   
64.
Abstract

There has been a growing consciousness for the need for a framework that is holistic and comprehensive in the assessment of irrigation system performance. This paper presents the results of statistical tests conducted on the analytical framework developed in Part 1 of the paper to examine whether or not it addresses the important issues of system performance. Information collected from two farmer-managed irrigation systems of Nepal was used to test the validity of the framework. The empirical evidence shows that the framework is valid in identifying and fitting conventionally-overlooked livelihood assets and that it demonstrates differences in farm households' access to these assets resulting in varying performance of irrigation systems.  相似文献   
65.
66.
[6,6]‐phenyl‐C‐61‐butyric acid methyl ester (PCBM) and poly(3‐hexylthiophene) (P3HT) are the most widely used acceptor and donor materials, respectively, in polymer solar cells (PSCs). However, the low LUMO (lowest unoccupied molecular orbital) energy level of PCBM limits the open circuit voltage (Voc) of the PSCs based on P3HT. Herein a simple, low‐cost and effective approach of modifying PCBM and improving its absorption is reported which can be extended to all fullerene derivatives with an ester structure. In particular, PCBM is hydrolyzed to carboxylic acid and then converted to the corresponding carbonyl chloride. The latter is condensed with 4‐nitro‐4’‐hydroxy‐α‐cyanostilbene to afford the modified fullerene F . It is more soluble than PCBM in common organic solvents due to the increase of the organic moiety. Both solutions and thin films of F show stronger absorption than PCBM in the range of 250–900 nm. The electrochemical properties and electronic energy levels of F and PCBM are measured by cyclic voltammetry. The LUMO energy level of F is 0.25 eV higher than that of PCBM. The PSCs based on P3HT with F as an acceptor shows a higher Voc of 0.86 V and a short circuit current (Jsc) of 8.5 mA cm?2, resulting in a power conversion efficiency (PCE) of 4.23%, while the PSC based on P3HT:PCBM shows a PCE of about 2.93% under the same conditions. The results indicate that the modified PCBM, i.e., F , is an excellent acceptor for PSC based on bulk heterojunction active layers. A maximum overall PCE of 5.25% is achieved with the PSC based on the P3HT: F blend deposited from a mixture of solvents (chloroform/acetone) and subsequent thermal annealing at 120 °C.  相似文献   
67.
We report molecular changes in leaves of rice plants (Oryza sativa L. - reference crop plant and grass model) exposed to ultra low-dose ionizing radiation, first using contaminated soil from the exclusion zone around Chernobyl reactor site. Results revealed induction of stress-related marker genes (Northern blot) and secondary metabolites (LC-MS/MS) in irradiated leaf segments over appropriate control. Second, employing the same in vitro model system, we replicated results of the first experiment using in-house fabricated sources of ultra low-dose gamma (γ) rays and selected marker genes by RT-PCR. Results suggest the usefulness of the rice model in studying ultra low-dose radiation response/s.  相似文献   
68.
Nanoparticles (about 200 nm thick and 600–12000 nm long flakes) of dipyridamole, a poorly water-soluble anti-thrombosis drug, are produced by supercritical antisolvent solvent with enhanced mass transfer method. Applicability of sonication in liquid CO2 for mixing of drug and excipient nanoparticles is demonstrated for several binary mixtures of drug and excipient. The drug particles are mixed with three different excipients: silica nanoparticles, lactose microparticles, and polyvinylpyrrolidone nanoparticles. To intimately mix at nanoscale, macro mixtures of dipyridamole and excipient particles are sonicated in liquid carbon dioxide. The effects of ultrasonic energy, amplitude, and component weight ratio are studied for the binary mixtures. Characterization of mixing is done using several methods. Scanning electron microscopy is used as a primary method for microscopic analysis. Two macroscopic effects, drug dissolution and blend homogeneity (relative standard deviation), are used to characterize mixing quality of drug/lactose mixture. Results of drug dissolution and blend homogeneity show effectiveness of the proposed mixing method for fine size particles. Material handling properties of drug/silica and lactose/silica mixtures were examined. Upon mixing, the handling properties are significantly improved as measured by compressibility index and Hausner ratio. Liquid CO2 offers an environmentally benign media for mixing. In addition, the mixture obtained does not contain any residual solvent as compared to the sonication in organic liquids. Upon depressurization, CO2 is easily removed from the mixture providing a facile recovery of the product.  相似文献   
69.
Results of the investigations carried out on the electrical behavior of silver particulate films deposited on electron beam irradiated polystyrene (PS) coated substrates held at a temperature of 455 K in a vacuum of 8 × 10−6 torr at a constant deposition rate of 0.4 nm/s are reported. It is known that when metals are evaporated on to softened polymer substrates, subsurface particulate structures are formed whose morphology is dependent on deposition parameters. Further, it was shown that the morphology is dependent on polymer-metal interaction. The present work demonstrates that the polymer-metal interaction can be brought about in inert polymers like PS by electron irradiation. The results indicate that the films deposited on PS irradiated to a dose of 20 and 25 kGy gives rise to smaller clusters with smaller inter-cluster separation, better suited for sensor applications. The induced polymer-metal interaction is attributed to the creation of free radicals due to the 8 MeV electron irradiation.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号