首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93459篇
  免费   1221篇
  国内免费   420篇
电工技术   914篇
综合类   2324篇
化学工业   13663篇
金属工艺   4978篇
机械仪表   3199篇
建筑科学   2585篇
矿业工程   615篇
能源动力   1398篇
轻工业   4236篇
水利工程   1358篇
石油天然气   446篇
无线电   9835篇
一般工业技术   17953篇
冶金工业   4451篇
原子能技术   353篇
自动化技术   26792篇
  2022年   110篇
  2021年   150篇
  2020年   124篇
  2019年   118篇
  2018年   14568篇
  2017年   13480篇
  2016年   10115篇
  2015年   768篇
  2014年   473篇
  2013年   895篇
  2012年   3498篇
  2011年   9840篇
  2010年   8601篇
  2009年   5899篇
  2008年   7175篇
  2007年   8121篇
  2006年   492篇
  2005年   1525篇
  2004年   1412篇
  2003年   1418篇
  2002年   782篇
  2001年   270篇
  2000年   345篇
  1999年   223篇
  1998年   284篇
  1997年   217篇
  1996年   219篇
  1995年   155篇
  1994年   166篇
  1993年   151篇
  1992年   141篇
  1991年   135篇
  1990年   112篇
  1989年   144篇
  1988年   110篇
  1987年   121篇
  1986年   122篇
  1985年   135篇
  1984年   159篇
  1983年   117篇
  1982年   119篇
  1981年   96篇
  1980年   92篇
  1979年   100篇
  1978年   83篇
  1977年   102篇
  1976年   98篇
  1975年   87篇
  1974年   92篇
  1966年   88篇
排序方式: 共有10000条查询结果,搜索用时 11 毫秒
991.
In this paper, we propose an efficient scalable algorithm for mining Maximal Sequential Patterns using Sampling (MSPS). The MSPS algorithm reduces much more search space than other algorithms because both the subsequence infrequency-based pruning and the supersequence frequency-based pruning are applied. In MSPS, a sampling technique is used to identify long frequent sequences earlier, instead of enumerating all their subsequences. We propose how to adjust the user-specified minimum support level for mining a sample of the database to achieve better overall performance. This method makes sampling more efficient when the minimum support is small. A signature-based method and a hash-based method are developed for the subsequence infrequency-based pruning when the seed set of frequent sequences for the candidate generation is too big to be loaded into memory. A prefix tree structure is developed to count the candidate sequences of different sizes during the database scanning, and it also facilitates the customer sequence trimming. Our experiments showed MSPS has very good performance and better scalability than other algorithms. Congnan Luo received the B.E. degree in Computer Science from Tsinghua University, Beijing, P.R. China, in 1997, the M.S. degree in Computer Science from the Institute of Software, Chinese Academy of Sciences, Beijing, P.R. China, in 2000, and the Ph.D. degree in Computer Science and Engineering from Wright State University, Dayton, OH, in 2006. Currently he is a technical staff at the Teradata division of NCR in San Diego, CA, and his research interests include data mining, machine learning, and databases. Soon M. Chung received the B.S. degree in Electronic Engineering from Seoul National University, Korea, in 1979, the M.S. degree in Electrical Engineering from Korea Advanced Institute of Science and Technology, Korea, in 1981, and the Ph.D. degree in Computer Engineering from Syracuse University, Syracuse, New York, in 1990. He is currently a Professor in the Department of Computer Science and Engineering at Wright State University, Dayton, OH. His research interests include database, data mining, Grid computing, text mining, XML, and parallel and distributed processing.  相似文献   
992.
A survey on algorithms for mining frequent itemsets over data streams   总被引:9,自引:8,他引:1  
The increasing prominence of data streams arising in a wide range of advanced applications such as fraud detection and trend learning has led to the study of online mining of frequent itemsets (FIs). Unlike mining static databases, mining data streams poses many new challenges. In addition to the one-scan nature, the unbounded memory requirement and the high data arrival rate of data streams, the combinatorial explosion of itemsets exacerbates the mining task. The high complexity of the FI mining problem hinders the application of the stream mining techniques. We recognize that a critical review of existing techniques is needed in order to design and develop efficient mining algorithms and data structures that are able to match the processing rate of the mining with the high arrival rate of data streams. Within a unifying set of notations and terminologies, we describe in this paper the efforts and main techniques for mining data streams and present a comprehensive survey of a number of the state-of-the-art algorithms on mining frequent itemsets over data streams. We classify the stream-mining techniques into two categories based on the window model that they adopt in order to provide insights into how and why the techniques are useful. Then, we further analyze the algorithms according to whether they are exact or approximate and, for approximate approaches, whether they are false-positive or false-negative. We also discuss various interesting issues, including the merits and limitations in existing research and substantive areas for future research.  相似文献   
993.
Non-negative matrix factorization for semi-supervised data clustering   总被引:9,自引:6,他引:3  
Traditional clustering algorithms are inapplicable to many real-world problems where limited knowledge from domain experts is available. Incorporating the domain knowledge can guide a clustering algorithm, consequently improving the quality of clustering. In this paper, we propose SS-NMF: a semi-supervised non-negative matrix factorization framework for data clustering. In SS-NMF, users are able to provide supervision for clustering in terms of pairwise constraints on a few data objects specifying whether they “must” or “cannot” be clustered together. Through an iterative algorithm, we perform symmetric tri-factorization of the data similarity matrix to infer the clusters. Theoretically, we show the correctness and convergence of SS-NMF. Moveover, we show that SS-NMF provides a general framework for semi-supervised clustering. Existing approaches can be considered as special cases of it. Through extensive experiments conducted on publicly available datasets, we demonstrate the superior performance of SS-NMF for clustering.
Ming DongEmail:
  相似文献   
994.
The profile of a graph is an integer-valued parameter defined via vertex orderings; it is known that the profile of a graph equals the smallest number of edges of an interval supergraph. Since computing the profile of a graph is an NP-hard problem, we consider parameterized versions of the problem. Namely, we study the problem of deciding whether the profile of a connected graph of order n is at most n−1+k, considering k as the parameter; this is a parameterization above guaranteed value, since n−1 is a tight lower bound for the profile. We present two fixed-parameter algorithms for this problem. The first algorithm is based on a forbidden subgraph characterization of interval graphs. The second algorithm is based on two simple kernelization rules which allow us to produce a kernel with linear number of vertices and edges. For showing the correctness of the second algorithm we need to establish structural properties of graphs with small profile which are of independent interest. A preliminary version of the paper is published in Proc. IWPEC 2006, LNCS vol. 4169, 60–71.  相似文献   
995.
The Individual Haplotyping MFR problem is a computational problem that, given a set of DNA sequence fragment data of an individual, induces the corresponding haplotypes by dropping the minimum number of fragments. Bafna, Istrail, Lancia, and Rizzi proposed an algorithm of time O(22k m 2 n+23k m 3) for the problem, where m is the number of fragments, n is the number of SNP sites, and k is the maximum number of holes in a fragment. When there are mate-pairs in the input data, the parameter k can be as large as 100, which would make the Bafna-Istrail-Lancia-Rizzi algorithm impracticable. The current paper introduces a new algorithm PM-MFR of running time , where k 1 is the maximum number of SNP sites that a fragment covers (k 1 is smaller than n), and k 2 is the maximum number of fragments that cover a SNP site (k 2 is usually about 10). Since the time complexity of the algorithm PM-MFR is not directly related to the parameter k, the algorithm solves the Individual Haplotyping MFR problem with mate-pairs more efficiently and is more practical in real biological applications. This research was supported in part by the National Natural Science Foundation of China under Grant Nos. 60433020 and 60773111, the Program for New Century Excellent Talents in University No. NCET-05-0683, the Program for Changjiang Scholars and Innovative Research Team in University No. IRT0661, and the Scientific Research Fund of Hunan Provincial Education Department under Grant No. 06C526.  相似文献   
996.
In this paper we describe a general grouping technique to devise faster and simpler approximation schemes for several scheduling problems. We illustrate the technique on two different scheduling problems: scheduling on unrelated parallel machines with costs and the job shop scheduling problem. The time complexity of the resulting approximation schemes is always linear in the number n of jobs, and the multiplicative constant hidden in the O(n) running time is reasonably small and independent of the error ε. Supported by Swiss National Science Foundation project 200020-109854, “Approximation Algorithms for Machine scheduling Through Theory and Experiments II”. A preliminary version of this paper appeared in the Proceedings of ESA’01.  相似文献   
997.
A hybrid aggregation and compression technique for road network databases   总被引:1,自引:1,他引:0  
Vector data and in particular road networks are being queried, hosted and processed in many application domains such as in mobile computing. Many client systems such as PDAs would prefer to receive the query results in unrasterized format without introducing an overhead on overall system performance and result size. While several general vector data compression schemes have been studied by different communities, we propose a novel approach in vector data compression which is easily integrated within a geospatial query processing system. It uses line aggregation to reduce the number of relevant tuples and Huffman compression to achieve a multi-resolution compressed representation of a road network database. Our experiments performed on an end-to-end prototype verify that our approach exhibits fast query processing on both client and server sides as well as high compression ratio.
Cyrus ShahabiEmail:
  相似文献   
998.
Given a graph with edges colored Red and Blue, we study the problem of sampling and approximately counting the number of matchings with exactly k Red edges. We solve the problem of estimating the number of perfect matchings with exactly k Red edges for dense graphs. We study a Markov chain on the space of all matchings of a graph that favors matchings with k Red edges. We show that it is rapidly mixing using non-traditional canonical paths that can backtrack. We show that this chain can be used to sample matchings in the 2-dimensional toroidal lattice of any fixed size with k Red edges, where the horizontal edges are Red and the vertical edges are Blue. An extended abstract appeared in J.R. Correa, A. Hevia and M.A. Kiwi (eds.) Proceedings of the 7th Latin American Theoretical Informatics Symposium, LNCS 3887, pp. 190–201, Springer, 2006. N. Bhatnagar’s and D. Randall’s research was supported in part by NSF grants CCR-0515105 and DMS-0505505. V.V. Vazirani’s research was supported in part by NSF grants 0311541, 0220343 and CCR-0515186. N. Bhatnagar’s and E. Vigoda’s research was supported in part by NSF grant CCR-0455666.  相似文献   
999.
In real-world classification problems, different types of misclassification errors often have asymmetric costs, thus demanding cost-sensitive learning methods that attempt to minimize average misclassification cost rather than plain error rate. Instance weighting and post hoc threshold adjusting are two major approaches to cost-sensitive classifier learning. This paper compares the effects of these two approaches on several standard, off-the-shelf classification methods. The comparison indicates that the two approaches lead to similar results for some classification methods, such as Naïve Bayes, logistic regression, and backpropagation neural network, but very different results for other methods, such as decision tree, decision table, and decision rule learners. The findings from this research have important implications on the selection of the cost-sensitive classifier learning approach as well as on the interpretation of a recently published finding about the relative performance of Naïve Bayes and decision trees.  相似文献   
1000.
We study the problem of segmenting a sequence into k pieces so that the resulting segmentation satisfies monotonicity or unimodality constraints. Unimodal functions can be used to model phenomena in which a measured variable first increases to a certain level and then decreases. We combine a well-known unimodal regression algorithm with a simple dynamic-programming approach to obtain an optimal quadratic-time algorithm for the problem of unimodal k-segmentation. In addition, we describe a more efficient greedy-merging heuristic that is experimentally shown to give solutions very close to the optimal. As a concrete application of our algorithms, we describe methods for testing if a sequence behaves unimodally or not. The methods include segmentation error comparisons, permutation testing, and a BIC-based scoring scheme. Our experimental evaluation shows that our algorithms and the proposed unimodality tests give very intuitive results, for both real-valued and binary data. Niina Haiminen received the M.Sc. degree from the University of Helsinki in 2004. She is currently a Graduate Student at the Department of Computer Science of University of Helsinki, and a Researcher at the Basic Research Unit of Helsinki Institute for Information Technology. Her research interests include algorithms, bioinformatics, and data mining. Aristides Gionis received the Ph.D. degree from Stanford University in 2003, and he is currently a Senior Researcher at the Basic Research Unit of Helsinki Institute for Information Technology. His research experience includes summer internship positions at Bell Labs, AT&T Labs, and Microsoft Research. His research areas are data mining, algorithms, and databases. Kari Laasonen received the M.Sc. degree in Theoretical Physics in 1995 from the University of Helsinki. He is currently a Graduate Student in Computer Science at the University of Helsinki and a Researcher at the Basic Research Unit of Helsinki Institute for Information Technology. His research is focused on algorithms and data analysis methods for pervasive computing.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号