The effects of grain refinement on the microstructure and mechanical properties of a secondary AlSi7-Cu3Mg gravity die cast cylinder head are reported. Metallographic and image analysis techniques have been used to quantitatively examine the macro- and microstructural changes occurring with the addition of grain-refining agent. The results indicate that the AlTi5B1 addition produces a fine and uniform grain structure throughout the casting; this effect is more pronounced in the slowly solidified regions. The initial contents of Ti and B, which are present as impurity elements in the supplied secondary alloy ingots, are not sufficient to produce effective grain refinement. Under the present casting conditions, the combined addition of AlTi5B1 and Sr does not produce any reciprocal interaction or effect on primary α-Al and eutectic solidification. Grain refinement improves the mechanical properties of the as-cast AlSi7Cu3Mg alloy and produces higher Weibull moduli, thus increasing the reliability of the casting. For automotive structural components, this could be considered an increase in safety. 相似文献
Irrigated agriculture plays a vital role for the socio-economic development of the Mediterranean area, although it has significant impacts on both water and energy resources. Therefore, in a context in which water resources are also experiencing increasing pressures, there is an urgent need for supporting their sustainable management. This may be an extremely challenging task, especially at the local scale, due to the several interconnected dynamics affecting the state of a complex irrigation system. In fact, multiple actors are involved in decision-making processes, and the use of natural resources (and their mutual interactions) strongly depends on their behaviors, which affect the system as a whole. In this context, the present study proposes an integrated methodology, based on the Water Energy Food Nexus (WEFN), specifically focused on the sustainable management of water resources for irrigation. Firstly, a model based on Causal Loop Diagrams (CLD) is developed in order to get a deep insight into the key dynamics behind a complex irrigation system. Secondly, three indices based on the “footprint” concept are identified, in order to synthesize such dynamics. The integration of these two approaches support investigating the whole system and, particularly, understanding the influence of multiple decisional actors on it, as well as the role of a set of key drivers and constraints. This might also allow drawing some relevant conclusions, useful for supporting effective decisions oriented to a sustainable water resources management. Specific reference is made to a case study, the Capitanata irrigation system, located in the Southern Italy.
The design of many submarine pipelines, especially for operating in deep water, relies on accurate test results for the local buckling collapse of pipes subjected to bending loading. Recent test results have shown apparently anomalous values of axial tensile and compressive strains in comparison to the values that would be expected on the basis of simple bending theory. This could have important consequences for the efficacy of the design factors derived using these anomalous results. Examples of anomalous test results are given in the paper and the cause of the differences between the strain values obtained in the tests and those expected on the basis of simple bending theory are explained using finite element modelling.The major point is that the general application of the simplified engineering theory of bending can be erroneous when ovalisation is imposed or, on the contrary, the boundary conditions of the section are restrained from ovalising deformations.This is a crucial limit state for the design of onshore and offshore pipelines. 相似文献
Water Resources Management - The provision of critical services, such as drinking water, is crucial both in ordinary and in emergency conditions due to either natural (e.g. earthquakes, droughts,... 相似文献
Metal-metal oxide (MMO), graphite and laboratory-made Ag/AgCl electrodes were electrochemically characterized to be used as reference electrodes embedded in concrete structures. Electrodes were studied in both, aqueous solutions of pH ranging from 7 to 13.5 and embedded into cement mortars; and the electrochemical studies were carried out in the absence and presence of chloride ions. Potential evolution, polarization behaviour, galvanostatic pulse response and impedance characteristics of the electrodes were carried out in aqueous solutions. Besides, the electrochemical stability of the electrodes embedded in mortar was studied for an exposure period of 2 years. It was found that the MMO pseudo-reference electrode is pH-sensitive, the graphite pseudo-reference electrode is oxygen sensitive and the Ag/AgCl pseudo-reference electrode is chloride sensitive. In spite of the fact that any of them can be used to determine the corrosion rates of rebars because they do not depend on the absolute potential and/or the long-term stability of the reference electrode when using traditional electrochemical techniques, long-term drifts in the electrode potentials may lead to misinterpretations of the rebar state. In this context graphite electrodes are recommended because they provide conservative results regarding the active/passive state of the rebars. 相似文献
ABSTRACT Concern over increasing water scarcity has led to the introduction of the concept of agricultural water productivity and an emphasis on interventions to achieve ‘more crop per drop’. Yet, a strong debate continues on how the concept is to be defined and used. Drawing largely from the irrigation literature, the origins of the concept and its methodological developments are reviewed, and its use in applied work over two decades is discussed. Based on this analysis of conceptual and applied research, key insights into the concept’s contributions and limitations are presented, as well as opportunities for further refinements. 相似文献