首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2413篇
  免费   110篇
  国内免费   6篇
电工技术   31篇
综合类   9篇
化学工业   738篇
金属工艺   36篇
机械仪表   77篇
建筑科学   109篇
矿业工程   2篇
能源动力   94篇
轻工业   289篇
水利工程   9篇
石油天然气   5篇
武器工业   1篇
无线电   225篇
一般工业技术   424篇
冶金工业   79篇
原子能技术   18篇
自动化技术   383篇
  2024年   4篇
  2023年   30篇
  2022年   150篇
  2021年   175篇
  2020年   62篇
  2019年   66篇
  2018年   86篇
  2017年   75篇
  2016年   77篇
  2015年   72篇
  2014年   115篇
  2013年   174篇
  2012年   112篇
  2011年   183篇
  2010年   135篇
  2009年   117篇
  2008年   120篇
  2007年   107篇
  2006年   88篇
  2005年   71篇
  2004年   66篇
  2003年   58篇
  2002年   54篇
  2001年   34篇
  2000年   24篇
  1999年   31篇
  1998年   28篇
  1997年   31篇
  1996年   23篇
  1995年   18篇
  1994年   16篇
  1993年   13篇
  1992年   6篇
  1991年   5篇
  1990年   5篇
  1989年   9篇
  1988年   6篇
  1987年   3篇
  1985年   5篇
  1984年   15篇
  1983年   7篇
  1982年   7篇
  1981年   5篇
  1980年   3篇
  1979年   7篇
  1977年   5篇
  1976年   3篇
  1974年   4篇
  1967年   3篇
  1966年   3篇
排序方式: 共有2529条查询结果,搜索用时 15 毫秒
101.
Selective Laser Melting (SLM) is an increasingly employed additive manufacturing process for the production of medical, aerospace, and automotive parts. Despite progresses in material flexibility and mechanical performances, relatively poor surface finish still presents a major limitation in the SLM process.In this study an investigation of surface roughness and morphology is presented for Steel 316L alloy parts made by SLM. In order to characterise the actual surfaces at different sloping angles, truncheon samples have been produced and an analysis has been conducted at different scales, by surface profilometer and scanning electron microscope (SEM). The surface analysis has showed an increasing density of spare particles positioned along the step edges, as the surface sloping angle increases. When layer thickness is comparable to particle diameter, the particles stuck along step edges can fill the gaps between consecutive layers, thus affecting the actual surface roughness.Classic models for roughness prediction, based on purely geometrical consideration of the stair step profile, fail to describe the observed trend of the experimental data. A new mathematical model is developed to include the presence of particles on top surfaces, in addition to the stair step effect, for the accurate prediction of surface roughness. Results show that surface roughness predicted by this model has a good agreement with the experimentally observed roughness. The paper investigates the key contributing factors influencing surface morphology, and a theoretical model for roughness prediction that provides valuable information to improve the surface quality of SLM parts, thus minimising the need of surface finishing.  相似文献   
102.
Extracellular vesicles (EV) are microparticles released in biological fluids by different cell types, both in physiological and pathological conditions. Owing to their ability to carry and transfer biomolecules, EV are mediators of cell-to-cell communication and are involved in the pathogenesis of several diseases. The ability of EV to modulate the immune system, the coagulation cascade, the angiogenetic process, and to drive endothelial dysfunction plays a crucial role in the pathophysiology of both autoimmune and renal diseases. Recent studies have demonstrated the involvement of EV in the control of renal homeostasis by acting as intercellular signaling molecules, mediators of inflammation and tissue regeneration. Moreover, circulating EV and urinary EV secreted by renal cells have been investigated as potential early biomarkers of renal injury. In the present review, we discuss the recent findings on the involvement of EV in autoimmunity and in renal intercellular communication. We focused on EV-mediated interaction between the immune system and the kidney in autoimmune diseases displaying common renal damage, such as antiphospholipid syndrome, systemic lupus erythematosus, thrombotic microangiopathy, and vasculitis. Although further studies are needed to extend our knowledge on EV in renal pathology, a deeper investigation of the impact of EV in kidney autoimmune diseases may also provide insight into renal biological processes. Furthermore, EV may represent promising biomarkers of renal diseases with potential future applications as diagnostic and therapeutic tools.  相似文献   
103.
Chromatin organization is developmentally regulated by epigenetic changes mediated by histone-modifying enzymes and chromatin remodeling complexes. In Drosophila melanogaster, the Tip60 chromatin remodeling complex (dTip60) play roles in chromatin regulation, which are shared by evolutionarily-related complexes identified in animal and plants. Recently, it was found that most subunits previously assigned to the dTip60 complex are shared by two related complexes, DOM-A.C and DOM-B.C, defined by DOM-A and DOM-B isoforms, respectively. In this work, we combined classical genetics, cell biology, and reverse genetics approaches to further investigate the biological roles played during Drosophila melanogaster development by a number of subunits originally assigned to the dTip60 complex.  相似文献   
104.
Carotenoids and phenylpropanoids play a dual role of limiting and countering photooxidative stress. We hypothesize that their “antioxidant” function is prominent in plants exposed to summer drought, when climatic conditions exacerbate the light stress. To test this, we conducted a field study on Phillyrea latifolia, a Mediterranean evergreen shrub, carrying out daily physiological and biochemical analyses in spring and summer. We also investigated the functional role of the major phenylpropanoids in different leaf tissues. Summer leaves underwent the most severe drought stress concomitantly with a reduction in radiation use efficiency upon being exposed to intense photooxidative stress, particularly during the central hours of the day. In parallel, a significant daily variation in both carotenoids and phenylpropanoids was observed. Our data suggest that the morning-to-midday increase in zeaxanthin derived from the hydroxylation of ß-carotene to sustain non-photochemical quenching and limit lipid peroxidation in thylakoid membranes. We observed substantial spring-to-summer and morning-to-midday increases in quercetin and luteolin derivatives, mostly in the leaf mesophyll. These findings highlight their importance as antioxidants, countering the drought-induced photooxidative stress. We concluded that seasonal and daily changes in photosynthetic and non-photosynthetic pigments may allow P. latifolia leaves to avoid irreversible photodamage and to cope successfully with the Mediterranean harsh climate.  相似文献   
105.
The angiogenin protein (ANG) is one of the most potent endogenous angiogenic factors. In this work we characterized by means of potentiometric, spectroscopic and voltammetric techniques, the copper complex species formed with peptide fragments derived from the N-terminal domain of the protein, encompassing the sequence 1-17 and having free amino, Ang1-17, or acetylated N-terminus group, AcAng1-17, so to explore the role of amino group in metal binding and cellular copper uptake. The obtained data show that amino group is the main copper anchoring site for Ang1-17. The affinity constant values, metal coordination geometry and complexes redox-potentials strongly depend, for both peptides, on the number of copper equivalents added. Confocal laser scanning microscope analysis on neuroblastoma cells showed that in the presence of one equivalent of copper ion, the free amino Ang1-17 increases cellular copper uptake while the acetylated AcAng1-17 strongly decreases the intracellular metal level. The activity of peptides was also compared to that of the protein normally present in the plasma (wtANG) as well as to the recombinant form (rANG) most commonly used in literature experiments. The two protein isoforms bind copper ions but with a different coordination environment. Confocal laser scanning microscope data showed that the wtANG induces a strong increase in intracellular copper compared to control while the rANG decreases the copper signal inside cells. These data demonstrate the relevance of copper complexes’ geometry to modulate peptides’ activity and show that wtANG, normally present in the plasma, can affect cellular copper uptake.  相似文献   
106.
Extracellular vesicles (EVs) are promising therapeutic tools in the treatment of cardiovascular disorders. We have recently shown that EVs from patients with Acute Coronary Syndrome (ACS) undergoing sham pre-conditioning, before percutaneous coronary intervention (PCI) were cardio-protective, while EVs from patients experiencing remote ischemic pre-conditioning (RIPC) failed to induce protection against ischemia/reperfusion Injury (IRI). No data on EVs from ACS patients recovered after PCI are currently available. Therefore, we herein investigated the cardio-protective properties of EVs, collected after PCI from the same patients. EVs recovered from 30 patients randomly assigned (1:1) to RIPC (EV-RIPC) or sham procedures (EV-naive) (NCT02195726) were characterized by TEM, FACS and Western blot analysis and evaluated for their mRNA content. The impact of EVs on hypoxia/reoxygenation damage and IRI, as well as the cardio-protective signaling pathways, were investigated in vitro (HMEC-1 + H9c2 co-culture) and ex vivo (isolated rat heart). Both EV-naive and EV-RIPC failed to drive cardio-protection both in vitro and ex vivo. Consistently, EV treatment failed to activate the canonical cardio-protective pathways. Specifically, PCI reduced the EV-naive Dusp6 mRNA content, found to be crucial for their cardio-protective action, and upregulated some stress- and cell-cycle-related genes in EV-RIPC. We provide the first evidence that in ACS patients, PCI reprograms the EV cargo, impairing EV-naive cardio-protective properties without improving EV-RIPC functional capability.  相似文献   
107.
Osteoporosis is the most common bone disease characterized by reduced bone mass and increased bone fragility. Genetic contribution is one of the main causes of primary osteoporosis; therefore, both genders are affected by this skeletal disorder. Nonetheless, osteoporosis in men has received little attention, thus being underestimated and undertreated. The aim of this study was to identify novel genetic variants in a cohort of 128 males with idiopathic low bone mass using a next-generation sequencing (NGS) panel including genes whose mutations could result in reduced bone mineral density (BMD). Genetic analysis detected in eleven patients ten rare heterozygous variants within the LRP5 gene, which were categorized as VUS (variant of uncertain significance), likely pathogenic and benign variants according to American College of Medical Genetics and Genomics (ACMG) guidelines. Protein structural and Bayesian analysis performed on identified LRP5 variants pointed out p.R1036Q and p.R1135C as pathogenic, therefore suggesting the likely association of these two variants with the low bone mass phenotype. In conclusion, this study expands our understanding on the importance of a functional LRP5 protein in bone formation and highlights the necessity to sequence this gene in subjects with idiopathic low BMD.  相似文献   
108.
Endometrial cancer (EC) is a deleterious condition which strongly affects a woman’s quality of life. Although aggressive interventions should be considered to treat high-grade EC, a conservative approach should be taken into consideration for women wishing to conceive. In this scenario, we present an overview about the EC fertility-sparing approach state of art. Type I EC at low stage is the only histological type which can be addressed with a fertility-sparing approach. Moreover, no myometrium and/or adnexal invasion should be seen, and lymph-vascular space should not be involved. Regarding the pharmaceutical target, progestins, in particular medroxyprogesterone acetate (MPA) or megestrol acetate (MA), are the most employed agent in conservative treatment of early-stage EC. The metformin usage and hysteroscopic assessment is still under debate, despite promising results. Particularly strict and imperious attention should be given to the follow-up and psychological wellbeing of women, especially because of the double detrimental impairment: both EC and EC-related infertility consequences.  相似文献   
109.
The balance between anti-tumor and tumor-promoting immune cells, such as CD4+ Th1 and regulatory T cells (Tregs), respectively, is assumed to dictate the progression of hepatocellular carcinoma (HCC). The transforming growth factor beta (TGFβ) markedly shapes the HCC microenvironment, regulating the activation state of multiple leukocyte subsets and driving the differentiation of cancer associated fibroblasts (CAFs). The fibrotic (desmoplastic) reaction in HCC tissue strongly depends on CAFs activity. In this study, we attempted to assess the role of TGFβ on transendothelial migration of Th1-oriented and Treg-oriented CD4+ T cells via a direct or indirect, CAF-mediated mechanisms, respectively. We found that the blockage of TGFβ receptor I-dependent signaling in Tregs resulted in impaired transendothelial migration (TEM) of these cells. Interestingly, the secretome of TGFβ-treated CAFs inhibited the TEM of Tregs but not Th1 cells, in comparison to the secretome of untreated CAFs. In addition, we found a significant inverse correlation between alpha-SMA and FoxP3 (marker of Tregs) mRNA expression in a microarray analysis involving 78 HCCs, thus suggesting that TGFβ-activated stromal cells may counteract the trafficking of Tregs into the tumor. The apparent dual behavior of TGFβ as both pro- and anti-tumorigenic cytokines may add a further level of complexity to the mechanisms that regulate the interactions among cancerous, stromal, and immune cells within HCC, as well as other solid tumors, and contribute to better manipulation of the TGFβ signaling as a therapeutic target in HCC patients.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号