首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3121篇
  免费   184篇
  国内免费   49篇
电工技术   130篇
综合类   141篇
化学工业   610篇
金属工艺   108篇
机械仪表   103篇
建筑科学   216篇
矿业工程   34篇
能源动力   99篇
轻工业   191篇
水利工程   35篇
石油天然气   133篇
武器工业   12篇
无线电   356篇
一般工业技术   519篇
冶金工业   241篇
原子能技术   30篇
自动化技术   396篇
  2024年   12篇
  2023年   33篇
  2022年   66篇
  2021年   103篇
  2020年   98篇
  2019年   98篇
  2018年   86篇
  2017年   87篇
  2016年   87篇
  2015年   95篇
  2014年   108篇
  2013年   186篇
  2012年   176篇
  2011年   201篇
  2010年   149篇
  2009年   158篇
  2008年   159篇
  2007年   136篇
  2006年   170篇
  2005年   130篇
  2004年   94篇
  2003年   79篇
  2002年   88篇
  2001年   69篇
  2000年   75篇
  1999年   57篇
  1998年   113篇
  1997年   90篇
  1996年   64篇
  1995年   53篇
  1994年   43篇
  1993年   31篇
  1992年   12篇
  1991年   27篇
  1990年   16篇
  1989年   15篇
  1988年   9篇
  1987年   11篇
  1986年   8篇
  1985年   8篇
  1984年   10篇
  1983年   8篇
  1982年   11篇
  1981年   5篇
  1980年   3篇
  1979年   2篇
  1977年   5篇
  1976年   4篇
  1972年   2篇
  1968年   1篇
排序方式: 共有3354条查询结果,搜索用时 15 毫秒
101.
The high prevalence of metabolic syndrome in persons with schizophrenia has spurred investigational efforts to study the mechanism beneath its pathophysiology. Early psychosis dysfunction is present across multiple organ systems. On this account, schizophrenia may be a multisystem disorder in which one organ system is predominantly affected and where other organ systems are also concurrently involved. Growing evidence of the overlapping neurobiological profiles of metabolic risk factors and psychiatric symptoms, such as an association with cognitive dysfunction, altered autonomic nervous system regulation, desynchrony in the resting-state default mode network, and shared genetic liability, suggest that metabolic syndrome and schizophrenia are connected via common pathways that are central to schizophrenia pathogenesis, which may be underpinned by oxytocin system dysfunction. Oxytocin, a hormone that involves in the mechanisms of food intake and metabolic homeostasis, may partly explain this piece of the puzzle in the mechanism underlying this association. Given its prosocial and anorexigenic properties, oxytocin has been administered intranasally to investigate its therapeutic potential in schizophrenia and obesity. Although the pathophysiology and mechanisms of oxytocinergic dysfunction in metabolic syndrome and schizophrenia are both complex and it is still too early to draw a conclusion upon, oxytocinergic dysfunction may yield a new mechanistic insight into schizophrenia pathogenesis and treatment.  相似文献   
102.
讨论了涤纶毛条生产过程中纺丝、拉伸、卷曲、制条等工艺参数及设备条件对毛粒的影响。为了减少毛粒,采用了合理的纺丝和制条工艺,并对后纺设备进行适当改造。涤纶毛条中的毛粒得到了有效控制,从而生产出优质涤纶毛条产品。  相似文献   
103.
The BiVO4 additive was found effective for low-temperature firing of ZnNb2O6 polycrystalline ceramics below 950°C in air without a serious degradation in their microwave dielectric properties. Dense BiVO4-doped ZnNb2O6 samples of a relative sintered density over 95% could be prepared even at 925°C. An optimally processed specimen exhibited excellent microwave dielectric properties of Q · f = 55000 GHz, ɛr= 26, and τf=−57 ppm/°C. With increasing BiVO4 addition up to 20 mol% relative to ZnNb2O6, while the quality factor Q · f was gradually decreased, the relative dielectric constant, ɛr, was linearly increased and the temperature coefficient of resonant frequency, τf, was slightly increased. The variations in Q · f and ɛr are surely attributable to the residual BiVO4 in the ZnNb2O6 matrix. An unexpected slight increase in τf is probably due to the formation of the Bi(V,Nb)O4-type solid solution.  相似文献   
104.
Oxylipins are bioactive lipids formed by the monooxygenation of polyunsaturated fatty acids (PUFA). Eicosanoids derived from arachidonic acid (ARA) are the most well-studied class of oxylipins that influence brain functions in normal health and in disease. However, comprehensive profiling of brain oxylipins from other PUFA with differing functions, and the examination of the effects of dietary PUFA and sex differences in oxylipins are warranted. Therefore, female and male Sprague–Dawley rats were provided standard rodent diets that provided additional levels of the individual n-3 PUFA α-linolenic acid (ALA), eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA), or the n-6 PUFA linoleic acid (LNA) alone or with ALA (LNA + ALA) compared to essential fatty acid-sufficient control diets. Oxylipins and PUFA were quantified in whole brains using HPLC-MS/MS and GC, respectively. Eighty-seven oxylipins were present at quantifiable levels: 51% and 17% of these were derived from ARA and DHA, respectively. At the mass level, ARA and DHA oxylipins comprised 81–90% and 6–12% of total oxylipins, while phospholipid ARA and DHA represented 25–35% and 49–62% of PUFA mass, respectively. Increasing dietary n-3 PUFA resulted in higher levels of oxylipins derived from their precursor PUFA; otherwise, the brain oxylipin profile was largely resistant to modulation by diet. Approximately 25% of oxylipins were higher in males, and this was largely unaffected by diet, further revealing a tight regulation of brain oxylipin levels. These fundamental data on brain oxylipin composition, diet effects, and sex differences will help guide future studies examining the functions of oxylipins in the brain.  相似文献   
105.
以主成分为焦磷酸铵的水溶性聚磷酸铵为实验原料,设置8.2、6.0、4.0、3.5、3.0、2.5、2.0等7组pH梯度,系统研究了酸度对焦磷酸铵水解的影响。结合一级反应动力学方程与阿累尼乌斯方程进行焦磷酸铵的水解动力学计算,结果表明:经过310 d(第二批260 d)的放置,pH从8.2降低到2.0时焦磷酸铵质量分数从初始态的92.6%依次减少为85.4%、51.2%、50.6%、50.2%、24.3%、12.9%和6.0%。焦磷酸铵在自然温度下的水解速率随着pH的降低而不同程度地加快,服从一级反应机理。pH从8.2降低到2.0时焦磷酸铵的水解速率常数从2.92×10-4~3.43×10-4增加至3.41×10-3~1.47×10-2,二者相差10~40余倍,对应半衰期为50~2 000 d。秋冬与春夏两时段的水解速率差异很大,二者水解速率常数相差1.17~4.32倍,焦磷酸铵的水解活化能为7.5~68.5 kJ/mol。  相似文献   
106.
107.
We present the electronic structure evolution from graphite oxide to thermally reduced graphite oxide. Most functional groups were removed by thermal reduction as indicated by high resolution X-ray photoelectron spectroscopy, and the electrical conductivity increased 6 orders compare with the precursor graphite oxide. X-ray absorption spectroscopy reveals that the thermally reduced graphite oxide shows several absorption peaks similar to those of pristine graphite, which were not observed in graphite oxide or chemically reduced graphite oxide. This indicates the better restoration of graphitic electronic conjugation by thermal reduction. Furthermore, the significant increased intensity of Raman 2D band of thermally reduced graphite oxide compared with graphite oxide also suggests the restoration of graphitic electronic structure (π orbital). These results provide useful information for fundamental understanding of the electronic structure of graphite oxide and thermally reduced graphite oxide.  相似文献   
108.
BACKGROUND: Purification and enzymatic properties of a chitosanase from Bacillus subtilis RKY3 have been investigated to produce a chitooligosaccharide. The enzyme reported was extracellular and constitutive, which was purified by two sequential steps including ammonium sulfate precipitation and ion exchange chromatography. RESULTS: Sodium dodecyl sulfate‐polyacrylamide gel electrophoresis of the purified chitosanase revealed one single band corresponding to a molecular weight of around 24 kDa. The highest chitosanase activity was found to be at pH 6.0 and at 60 °C. Although the mercaptide forming agents such as Hg2+ (10 mmol L?1) and p‐hydroxymercuribenzoic acid (1 mmol L?1, 10 mmol L?1) significantly or totally inhibited the enzyme activity, its activity was enhanced by the presence of 10 mmol L?1 Mn2+. The enzyme showed activity for hydrolysis of soluble chitosan and glycol chitosan, but colloidal chitin, carboxymethyl cellulose, crystalline cellulose, and soluble starch were not hydrolyzed. The analysis of chitosan hydrolysis by thin‐layer chromatography and viscosity variation revealed that the purified enzyme should be endosplitting‐type chitosanase. CONCLUSION: The chitosanase produced by Bacillus subtilis RKY3 was a novel chitosanlytic enzyme with relatively low molecular weight, which is a versatile enzyme for chitosan hydrolysis because it could hydrolyze soluble chitosan into a biofunctional oligosaccharide at a high level. Copyright © 2011 Society of Chemical Industry  相似文献   
109.
This study fabricated nanocomposites consisting of epoxy‐based shape memory polymer (ESMP) matrix and carbon nanofillers. The nanofillers include zero‐dimensional carbon black, one‐dimensional multiwalled carbon nanotubes, two‐dimensional (2D) graphene nanoplatelets, and three‐dimensional (3D) functionalized graphene sheets, which are all efficient microwave‐absorbing materials that can transform microwaves into heat energy. As a result, the temperatures of the nanocomposites increased more rapidly than pristine ESMP in microwaves. The functionalized graphene sheets were found to transform the microwaves into heat more efficiently than the other nanofillers. Possible microwave propagation paths in the nanocomposites were proposed. Moreover, the nanocomposites displayed significantly higher mechanical strengths than pristine ESMP. The low cost and strong nanocomposites with fast microwave responses may be applied as actuators or deployable devices in medical treatments. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45676.  相似文献   
110.
Epoxy‐based shape‐memory polymers (ESMPs) are a type of the most promising engineering smart polymers. However, their inherent brittleness limits their applications. Existing modification approaches are either based on complicated chemical reactions or done at the cost of the thermal properties of the ESMPs. In this study, a simple approach was used to fabricate ESMPs with the aim of improving their overall properties by introducing crosslinked carboxylic nitrile–butadiene nanorubber (CNBNR) into the ESMP network. The results show that the toughness of the CNBNR–ESMP nanocomposites greatly improved at both room temperature and the glass‐transition temperature (Tg) over that of the pure ESMP. Meanwhile, the increase in the toughness did not negatively affect other macroscopic properties. The CNBNR–ESMP nanocomposites presented improved thermal properties with a Tg in a stable range around 100 °C, enhanced thermal stabilities, and superior shape‐memory performance in terms of the shape‐fixing ratio, shape‐recovery ratio, shape‐recovery time, and repeatability of shape‐memory cycles. The combined property improvements and the simplicity of the manufacturing process demonstrated that the CNBNR–ESMP nanocomposites are desirable candidates for large‐scale applications in the engineering field as smart structural materials. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45780.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号