首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   851篇
  免费   51篇
  国内免费   16篇
电工技术   13篇
综合类   1篇
化学工业   230篇
金属工艺   27篇
机械仪表   31篇
建筑科学   41篇
矿业工程   3篇
能源动力   54篇
轻工业   63篇
水利工程   19篇
石油天然气   27篇
无线电   67篇
一般工业技术   186篇
冶金工业   26篇
原子能技术   12篇
自动化技术   118篇
  2023年   9篇
  2022年   24篇
  2021年   49篇
  2020年   36篇
  2019年   51篇
  2018年   81篇
  2017年   52篇
  2016年   66篇
  2015年   37篇
  2014年   47篇
  2013年   101篇
  2012年   56篇
  2011年   53篇
  2010年   54篇
  2009年   36篇
  2008年   23篇
  2007年   17篇
  2006年   18篇
  2005年   6篇
  2004年   8篇
  2003年   2篇
  2002年   12篇
  2001年   3篇
  2000年   3篇
  1999年   1篇
  1998年   4篇
  1997年   5篇
  1996年   1篇
  1995年   5篇
  1994年   4篇
  1993年   4篇
  1992年   4篇
  1991年   3篇
  1990年   4篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   5篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   3篇
  1974年   2篇
  1973年   2篇
排序方式: 共有918条查询结果,搜索用时 15 毫秒
61.
The dispersion and deposition of particles from a point source in a turbulent channel flow are studied. An empirical mean velocity profile and the experimental data for turbulent intensities are used in the analysis. The instantaneous turbulence fluctuation is simulated as a continuous Gaussian random field, and an ensemble of particle trajectories is generated and statistically analyzed. A series of digital simulations for dispersion and deposition of aerosol particles of various sizes from point sources at different positions from the wall is performed. Effects of Brownian diffusion on particle dispersion are studied. The effects of variation in particle density and particle-surface interaction are also discussed.  相似文献   
62.
ABSTRACT

Development of hot-gas filtration systems for advanced clean coal technologies has attracted considerable attention in recent years. The Integrated Gasification and Cleanup Facility (IGCF), which is an experimental pilot plant for testing performance of ceramic candle filters for hot-gas cleaning, has been operational at the Federal Energy Technology Center (FETC) in Morgantown, West Virginia, for several years. The present work describes a computer simulation study of gas flow and particle transport and deposition in the IGCF filter vessel with four filters. The stress transport model of FLUENT? code is used for evaluating the gas mean velocity and the root mean-square fluctuation velocity fields in the IGCF filter vessel. The instantaneous fluctuation velocity vector field is simulated by a filtered Gaussian white-noise model. Ensembles of particle trajectories are evaluated using the recently developed PARTICLE code. The model equations of the code include the effects of lift and Brownian motion in addition to gravity. The particle deposition patterns on the ceramic filters are evaluated, and the effect of particle size is studied. The results show that, for a clean filter (just after the backpulse), the initial deposition rate of particles on the candle filters is highly nonuniform. Furthermore, particles of different sizes have somewhat different deposition patterns, which could lead to nonuniform cake compositions and thicknesses along the candle filters. The effects of variations in the filter permeability on the vessel gas flow patterns and the pressure drop, as well as on particle transport patterns, are also studied.  相似文献   
63.

The statistical properties of charged particles and their wall deposition in a turbulent channel flow in the presence of an electrostatic field is studied in this paper. For a dilute concentration, the influence of small particles on the fluid motion is neglected. The instantaneous velocity field is generated by a direct numerical simulation of the Navier-Stokes equation via a pseudospectral method. The case in which each particle carries a single unit of charge and the case in which the particles have a saturation charge distribution are analyzed. Ensembles of 8192 particle trajectories are used for evaluating various statistics. Effects of size and electric field intensity on particle trajectory statistics and wall deposition rate are studied. RMS particle velocities and particle concentrations at different distances from the wall are evaluated and discussed. The results for deposition rates are compared with those obtained from empirical equations.  相似文献   
64.

Wall deposition of rigid-link fibrous aerosols in a turbulent channel flow is studied. The instantaneous turbulent velocity vector field is generated by the direct numerical simulation of the Navier-Stokes equation with the aid of a pseudospectral code. It is assumed that the fiber is composed of five rigidly attached ellipsoidal links. The dynamic behavior of these elongated and irregular shaped particles is markedly different from the spherical ones. The hydrodynamic forces and torques acting on the fiber are evaluated and the equations governing the translational and rotational motions of the fiber are analyzed. Euler's four parameters are used, and motions of fibrous particles in the turbulent channel flow field are studied. Ensembles of 8000 fiber trajectories are generated and are used for evaluating various statistics. Root mean-square fiber velocities and fiber concentrations at different distances from the wall are evaluated and discussed. Empirical models for the deposition rate of curly fibers are also developed. The model predictions are compared with the simulation data and good agreement is observed.  相似文献   
65.

Transport and deposition of angular fibrous particles in turbulent channel flows were studied. The instantaneous fluid velocity field was generated by the direct numerical simulation (DNS) of the Navier-Stokes equation via a pseudo-spectral method. An angular fibers was assumed to consist of two elongated ellipsoids attached at their tips. For a dilute suspension of fibers, a one-way coupling assumption was used in that the flow carries the fibers, but the coupling effect of the fiber on the flow was neglected. The particle equations of motion used included the hydrodynamic forces and torques, the shear-induced lift and the gravitational forces. The hydrodynamic interactions of the high aspect ratio linkage were assumed to be negligibly small. Euler's four parameters (quaternions) were used for describing the time evolution of fiber orientations. Ensembles of fiber trajectories and orientations in turbulent channel flows were generated and statistically analyzed. The results were compared with those for spherical particles and straight fibers and their differences were discussed. Effects of fiber size, aspect ratio, fiber angle, turbulence near wall eddies, and various forces were studied. The DNS predictions were compared with experimental data for straight fibers and a proposed empirical equation model.  相似文献   
66.
Bis(2‐phenylindenyl)zirconium dichloride (bis(2‐PhInd)ZrCl2) catalyst was synthesized via the preparation of bis(2‐phenylindenyl)zirconium dimethyl (bis(2‐PhInd)ZrMe2) followed by chlorination to obtain the catalyst. Performance of the catalyst for ethylene polymerization and its kinetic behavior were investigated. Activity of the catalyst increased as the [Al]:[Zr] molar ratio increased to 2333:1, followed by reduction at higher ratios. The maximum activity of the catalyst was obtained at a polymerization temperature of 60 °C. The rate‐time profile of the reaction was of a decay type under all conditions. A general kinetic scheme was modified by considering a reversible reaction of latent site formation, and used to predict dynamic polymerization rate and viscosity average molecular weight of the resulting polymer. Kinetic constants were estimated by the Nelder‐Mead numerical optimization algorithm. It was shown that any deviation from the general kinetic behavior can be captured by the addition of the reversible reaction of latent site formation. Simulation results were in satisfactory agreement with experimental data.  相似文献   
67.
We inspected the possibility of using a synthesized boron nitride nanocluster (B12N12) as a potential chemical sensor for anticancer α-cyano-4-hydroxycinnamic acid (CHC) drug by performing density functional theory calculations. It was found that CHC drug is mainly adsorbed via its acidic group on the BN nanocluster with adsorption energy about ??23.7 kcal/mol. In view of the high decrease of HOMO–LUMO energy gap (Eg) of the BN nanocluster after the adsorption process, it is expected that this process induces a significant increase in its electrical conductivity. Thus, the BN nanocluster is suggested as a potential sensor for CHC drug detection. We predicted that the BN cluster benefits from a short recovery time (~?22.7 s) and high sensitivity (55.2% decrease in the Eg). Also, it is interesting that the BN nanocluster can be used as a sensor in the pristine form without needing to the functionalization, doping, decoration, etc. Finally, we showed that by increasing the percentage of Hartree–Fock exchange of the functional, the adsorption energy, and sensitivity are increased and decreased, respectively. Also, the sensitivity of the BN nanocluster is predicted to decrease in water solution.  相似文献   
68.
In the present study, varying amounts of tetramethylguanidinium moiety have been conjugated to linear polyethylenimine to obtain linear polyethylenimine-tmg (LPTG) polymers. Incorporation of hydrophobic and highly basic moiety in the polymeric backbone resulted in the significant improvement in the antibacterial activity which was confirmed by zone of inhibition and MIC assays. Further, the results of transmission electron microscopy and confocal studies revealed that the projected LPTG polymers possessed higher antibacterial activity than the native polymer. In addition, these modified polyethylenimine (PEI) polymers were capable of reducing auric chloride into stable gold nanoparticles. These polyamine-stabilized gold nanoparticles can be used in various biomedical applications.  相似文献   
69.
Taguchi design of experiments methodology was used to determine the most influential spark plasma sintering (SPS) parameters on densification of TiB2–SiC ceramic composites. In this case, four processing factors (SPS temperature, soaking time, applied external pressure and SiC particle size) at three levels were examined in order to acquire the optimum conditions. The statistical analysis identified the sintering temperature as the most effective factor influencing the relative density of TiB2–SiC ceramics. A relative density of 99.5% was achieved at the optimal SPS conditions; i.e. temperature of 1800?°C, soaking time of 15?min and pressure of 30?MPa by adding 200-nm SiC particulates to the TiB2 matrix. The experimental measurements and predicted values for the relative density of composite fabricated at the optimum SPS conditions and reinforced with the proper SiC particle size were almost similar. The mechanisms of sintering and densification of spark plasma sintered TiB2–SiC composites were discussed in details.  相似文献   
70.
In this study, the impact of TiN as a sintering aid on the relative density and microstructure of TiB2 ceramic was investigated. Monolithic TiB2 and TiB2 doped with 5?wt% TiN were sintered at 1900?°C for 7?min dwell time under the pressure of 40?MPa by spark plasma. The addition of TiN affected the microstructure of TiB2-based sample considerably depicting the finer grains in the as-sintered ceramic. X-ray diffraction evaluation indicated that no interaction occurred between the initial materials. However, detail investigation by the map analysis and energy dispersive spectroscopy results revealed the formation of in-situ nano-sized hBN secondary phase in the TiN-doped TiB2. In addition, TiN played a remarkable role on increasing the relative density of TiN-doped TiB2 ceramic producing a nearly fully dense ceramic with relative density of 99.9% in comparison with the monolithic ceramic having 96.7% relative density.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号