首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   5篇
  国内免费   1篇
电工技术   1篇
化学工业   29篇
金属工艺   2篇
机械仪表   3篇
能源动力   6篇
水利工程   1篇
无线电   14篇
一般工业技术   19篇
冶金工业   2篇
自动化技术   29篇
  2023年   5篇
  2022年   6篇
  2021年   9篇
  2020年   5篇
  2019年   4篇
  2018年   4篇
  2017年   2篇
  2016年   7篇
  2015年   1篇
  2014年   8篇
  2013年   5篇
  2012年   3篇
  2011年   5篇
  2010年   4篇
  2009年   8篇
  2008年   5篇
  2007年   4篇
  2006年   5篇
  2005年   6篇
  2004年   1篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1988年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有106条查询结果,搜索用时 0 毫秒
81.
Many works focus on multi‐spectral capture and analysis, but multi‐spectral display still remains a challenge. Most prior works on multi‐primary displays use ad‐hoc narrow band primaries that assure a larger color gamut, but cannot assure a good spectral reproduction. Content‐dependent spectral analysis is the only way to produce good spectral reproduction, but cannot be applied to general data sets. Wide primaries are better suited for assuring good spectral reproduction due to greater coverage of the spectral range, but have not been explored much. In this paper we explore the use of wide band primaries for accurate spectral reproduction for the first time and present the first content‐independent multi‐spectral display achieved using superimposed projections with modified wide band primaries. We present a content‐independent primary selection method that selects a small set of n primaries from a large set of m candidate primaries where m > n. Our primary selection method chooses primaries with complete coverage of the range of visible wavelength (for good spectral reproduction accuracy), low interdependency (to limit the primaries to a small number) and higher light throughput (for higher light efficiency). Once the primaries are selected, the input values of the different primary channels to generate a desired spectrum are computed using an optimization method that minimizes spectral mismatch while maximizing visual quality. We implement a real prototype of multi‐spectral display consisting of 9‐primaries using three modified conventional 3‐primary projectors, and compare it with a conventional display to demonstrate its superior performance. Experiments show our display is capable of providing large gamut assuring a good visual appearance while displaying any multi‐spectral images at a high spectral accuracy.  相似文献   
82.
Radiometric compensation methods remove the effect of the underlying spatially varying surface reflectance of the texture when projecting on textured surfaces. All prior work sample the surface reflectance dependent radiometric transfer function from the projector to the camera at every pixel that requires the camera to observe tens or hundreds of images projected by the projector. In this paper, we cast the radiometric compensation problem as a sampling and reconstruction of multi‐dimensional radiometric transfer function that models the color transfer function from the projector to an observing camera and the surface reflectance in a unified manner. Such a multi‐dimensional representation makes no assumption about linearity of the projector to camera color transfer function and can therefore handle projectors with non‐linear color transfer functions(e.g. DLP, LCOS, LED‐based or laser‐based). We show that with a well‐curated sampling of this multi‐dimensional function, achieved by exploiting the following key properties, is adequate for its accurate representation: (a) the spectral reflectance of most real‐world materials are smooth and can be well‐represented using a lower‐dimension function; (b) the reflectance properties of the underlying texture have strong redundancies – for example, multiple pixels or even regions can have similar surface reflectance; (c) the color transfer function from the projector to camera have strong input coherence. The proposed sampling allows us to reduce the number of projected images that needs to be observed by a camera by up to two orders of magnitude, the minimum being only two. We then present a new multi‐dimensional scattered data interpolation technique to reconstruct the radiometric transfer function at a high spatial density (i.e. at every pixel) to compute the compensation image. We show that the accuracy of our interpolation technique is higher than any existing methods.  相似文献   
83.
This paper aims to design a multi-tone radiator exploiting harmonic radiation characteristic of time-modulated antenna array for wireless information and power transmission (WIPT) and multi-operational WIPT receiver. The time-modulated linear antenna array (TMLAA) radiating simultaneously at modulating and harmonic frequencies separated in multiple switching periods is utilized as a multi-tone radiating system. TMLAA with suitable power in harmonic bands generates multi-tone radiation by employing an optimized switching sequence. The ON and OFF time instants of the TMLAA are optimized to suppress sidelobe level and enhance sideband level. A population-based optimization algorithm, teaching learning based optimization (TLBO), is employed to optimize the ON and OFF instants of the TMLAA to suppress sidelobe level and enhance sideband level. TLBO is utilized for a 16-element TMLAA with minimizing cost function to achieve the above objectives. The 16-element TMLAA with optimized switching radiates multi-tone beams with a minimum of 5 dB peak power difference exploited as WIPT. The purpose of multi-operation is accomplished by utilizing the Wilkinson power divider in the receiver system; its power dividing capability is analyzed using applied wave research (AWR). A voltage doubler type rectifier is modeled for DC generation and is tested using AWR. The DC generating capability is tested for fixed power available at various frequencies, and the fixed desired frequency with various available power levels is tested. The results show that the designed circuitry provides a maximum of 80% power conversion efficiency (PCE).  相似文献   
84.
In this paper, we propose a generic point cloud encoder that provides a unified framework for compressing different attributes of point samples corresponding to 3D objects with arbitrary topology. In the proposed scheme, the coding process is led by an iterative octree cell subdivision of the object space. At each level of subdivision, positions of point samples are approximated by the geometry centers of all tree-front cells while normals and colors are approximated by their statistical average within each of tree-front cells. With this framework, we employ attribute-dependent encoding techniques to exploit different characteristics of various attributes. All of these have led to significant improvement in the rate-distortion (R-D) performance and a computational advantage over the state of the art. Furthermore, given sufficient levels of octree expansion, normal space partitioning and resolution of color quantization, the proposed point cloud encoder can be potentially used for lossless coding of 3D point clouds.  相似文献   
85.
In this paper, analytical subthreshold current and subthreshold swing models are derived for the short-channel dual-metal-gate (DMG) fully-depleted (FD) recessed-source/ drain (Re-S/D) SOI MOSFETs considering that diffusion is the dominant current flow mechanism in subthreshold regime of the device operation. The two-dimensional (2D) channel potential is derived in terms of back surface potential and other device parameters. The so called virtual cathode potential in term of the minimum of back surface potential is also derived from 2D channel potential. The virtual cathode potential based subthreshold current and surface potential based subthreshold swing model results are extensively analyzed for various device parameters like the oxide and silicon thicknesses, thickness of source/drain extension in the BOX, control to screen gate length ratio and channel length. The numerical simulation results obtained from ATLAS \(^{\text{ TM }}\) , a 2D numerical device simulator from SILVACO Inc have been used as a tool to verify the model results.  相似文献   
86.

In this study, undoped and Magnesium doped TiO2 nanoparticles (Mg-TiO2 NPs) are successfully synthesized via a simple sol–gel method cost-effectively. The prepared Mg- TiO2 NPs is characterized by UV–Vis, FTIR, PL, XRD, FESEM, TEM, and EDAX. UV–Visible Spectroscopy showed that an increase in the optical bandgap concerning the concentration of dopant Mg increases. The bandgap values were found to be 3.57–3.54 eV. FTIR spectra shows that the presence of the characteristic stretching and bending vibrational band of Ti–O bonding at 468 cm?1 and shifts in vibrational bands were observed for Mg-TiO2 NPs. PL spectra of Mg- TiO2 NPs at different concentrations exhibit a strong UV emission band. X-ray diffraction confirmed the formation of the tetragonal anatase phase. The average crystallite size of synthesized samples was found to be 22–19 nm. The average crystallite size of Mg- TiO2 NPs decreases with increasing the concentration of dopant Mg. The FESEM and TEM analysis confirmed that the spherical morphology for both TiO2 and Mg-TiO2 NPs. SAED pattern confirms the crystalline nature of prepared samples. EDAX spectra confirm the presence of Ti, O, and Mg and confirm that Mg2+ ions are present in the TiO2 lattices. The prepared samples were investigated against gram-positive and gram-negative bacteria. The prepared samples exhibit potent antibacterial activity against gram-negative bacteria than the gram-positive bacteria. The prepared samples exhibit significant photocatalytic degradation for Methylene blue (MB).

  相似文献   
87.
The Monod method is widely used to model nutrient limitation and primary productivity in water bodies. It offers a straightforward approach to simulate the main processes governing eutrophication and it allows the proper representation of many aquatic systems. The Monod method is not able to represent the nutrient luxury uptake by algae, which consists of the excess nutrient uptake during times of high nutrient availability in the water column. The Droop method, which is also used to model nutrient limitation and primary productivity, takes into account the luxury uptake of nutrients. Because of the relative complexity of the Droop method, it has not been systematically adopted for the simulation of large stream networks. The Water Quality Analysis Simulation Program (WASP) version 7.1 was updated to include nutrient luxury uptake for periphyton growth. The objective of this paper is to present the new nutrient limitation processes simulated by WASP 7.1 and to compare the performance of the Droop and the Monod methods for a complex stream network where periphyton is the main organism responsible for primary productivity. Two applications of WASP 7.1 with the Droop and Monod methods were developed for the Raritan River Basin in New Jersey. Water quality parameters affecting the transport and fate of nutrients were calibrated based on observed data collected for the Raritan River total maximum daily load. The dissolved oxygen and nutrients simulated with WASP 7.1, obtained with the Droop and Monod methods, were compared at selected monitoring stations under different flows and nutrient availability conditions. The comparison of the WASP 7.1 applications showed the importance of using the Droop method when periphyton was the main organism responsible for primary productivity. The data simulated with the Droop method resulted in good agreement with the observed data for dissolved oxygen, ammonia-nitrogen, nitrate-nitrogen, and dissolved orthophosphate at the selected stations. The Monod method was not able to capture the diel dissolved oxygen variation when nutrients were scarce, and it resulted in unrealistic diel variations of nutrients at times of strong primary productivity at some locations.  相似文献   
88.
Telecommunication Systems - This paper applies time modulation to deal with the design of antenna arrays for UAVs formation flight using a rectangular micro-strip as antenna element in the...  相似文献   
89.
In this work, the evaluations of noble nanoparticles for the structural and morphological characteristics are focused. The control of desired particles size and morphology for hydroxyapatite (HAp) and Ag-substituted hydroxyapatite (AgHAp) derived from Lamellidens marginalis shells using Azadirachta Indica (AI) gum as a potential surfactant for the synthesis of stable nanoparticles are reported. The morphological change with respect to the concentration of AI gum is analyzed. The functional group (FTIR) and crystallographic (XRD) characterization of the HAp and AgHAp nanoparticles confirm the presence of HAp with desired apatite functional peaks. The morphological evaluation (FE-SEM) exhibited the formation of cocoon-shaped nanoparticles for the AI gum-medicated synthesis. Higher AI gum concentration reduces the particle size along with the formation of unique surface morphology. The average diameter of the synthesized AgHAp nanoparticles was found to be ≤30 nm which is revealed from HR-TEM. The bacterial investigation against bacterial strains substantiates the higher resistance of bacterial growth for Staphylococcus aureus was observed than Escherichia coli for the AgHAp particles. Hence, embedding silver nanoparticles in the HAp is an efficient approach to enhance the long-term antibacterial effect of the orthopedic and dental applications.  相似文献   
90.
The purpose of the present paper is to investigate the flow and heat transfer of thermal radiation on the Jeffery fluid flow within a microchannel for the effects of the superhydrophobic surface (SHS) within suction/injection. The governing differential equations of motion and heat transfer are transformed into nonlinear coupled ordinary differential equations (ODEs) using appropriate similarity transformations. The ODEs are solved along with boundary conditions by adopting Runge–Kutta with shooting technique. Symbolic computational software such as MATLAB, the solver bvp4c syntax examines the behavior of the relevant physical parameters. However, some effective emerging parameters on the flow problem reveal that the microchannel walls within the suction/injection parameter increase the temperature, and the SHS is heated. In contrast, without slip, the opposite behavior is rendered. It is clearly shown that the velocity profile diminishes with increasing the Prandtl number. Furthermore, it is noticed that velocity decreases for increasing values of Hartmann number. Comparison with available results for particular cases is an excellent agreement.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号