首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   440篇
  免费   30篇
  国内免费   3篇
电工技术   8篇
综合类   3篇
化学工业   88篇
金属工艺   20篇
机械仪表   13篇
建筑科学   16篇
矿业工程   8篇
能源动力   35篇
轻工业   27篇
水利工程   9篇
石油天然气   9篇
无线电   57篇
一般工业技术   81篇
冶金工业   17篇
原子能技术   1篇
自动化技术   81篇
  2024年   1篇
  2023年   12篇
  2022年   24篇
  2021年   28篇
  2020年   28篇
  2019年   33篇
  2018年   40篇
  2017年   35篇
  2016年   39篇
  2015年   21篇
  2014年   21篇
  2013年   48篇
  2012年   31篇
  2011年   37篇
  2010年   15篇
  2009年   11篇
  2008年   11篇
  2007年   9篇
  2006年   2篇
  2005年   5篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1999年   2篇
  1998年   4篇
  1997年   4篇
  1994年   3篇
  1990年   1篇
  1988年   2篇
  1986年   1篇
排序方式: 共有473条查询结果,搜索用时 15 毫秒
11.
Wireless Personal Communications - Due to the development and growth of Internet platforms and web services as communication resources, the competition for the network and its limited resources is...  相似文献   
12.
Food processing is among the greatest water-consuming industries with a significant role in the implementation of sustainable development goals. Water-consuming industries such as food processing have become a threat to limited freshwater resources, and numerous attempts are being carried out in order to develop and apply novel approaches for water management in these industries. Studies have shown the positive impact of the new methods of process integration (e.g., water pinch, mathematical optimization, etc.) in maximizing water reuse and recycle. Applying these methods in food processing industries not only significantly supported water consumption minimization but also contributed to environmental protection by reducing wastewater generation. The methods can also increase the productivity of these industries and direct them to sustainable production. This interconnection led to a new subcategory in nexus studies known as water-food-environment nexus. The nexus assures sustainable food production with minimum freshwater consumption and minimizes the environmental destructions caused by untreated wastewater discharge. The aim of this study was to provide a thorough review of water-food-environment nexus application in food processing industries and explore the nexus from different aspects. The current study explored the process of food industries in different sectors regarding water consumption and wastewater generation, both qualitatively and quantitatively. The most recent wastewater treatment methods carried out in different food processing sectors were also reviewed. This review provided a comprehensive literature for choosing the optimum scenario of water and wastewater management in food processing industries.  相似文献   
13.
14.
In this study, the superparamagnetic adsorbent as Fe@Mg‐Al LDH was synthesised by different methods with two steps for the removal of heavy metal ions from water samples. An easy, practical, economical, and replicable method was introduced to remove water contaminants, including heavy ions from aquatic environments. Moreover, the structure of superparamagnetic adsorbent was investigated by various methods including Fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy‐dispersive X‐ray spectroscopy, and vibrating sample magnetometer. For better separation, ethylenediaminetetraacetic acid ligand was used, forming a complex with antimony ions to create suitable conditions for the removal of these ions. Cadmium and antimony ions were studied by floatation in aqueous environments with this superparamagnetic adsorbent owing to effective factors such as pH, amount of superparamagnetic adsorbent, contact time, sample temperature, volume, and ligand concentration. The model of Freundlich, Langmuir, and Temkin isotherms was studied to qualitatively evaluate the adsorption of antimony ions by the superparamagnetic adsorbent. The value of loaded antimony metal ions with Fe@Mg‐Al LDH was resulted at 160.15 mg/g. The standard deviation value in this procedure was found at 7.92%. The desorption volume of antimony metal ions by the adsorbent was found to be 25 ml. The thermodynamic parameters as well as the effect of interfering ions were investigated by graphite furnace atomic absorption spectrometry.  相似文献   
15.
Most of the methods developed for efficiency estimation of distillation columns were based on the empirical mass transfer and hydraulic relations correlated to laboratory data. Therefore, these methods cannot estimate efficiency of industrial columns with sufficient accuracy. In this paper, a new and applicable method was developed for calculation of efficiency (and mass and heat transfer coefficients) of distillation columns containing structured packings. This method has potential advantages; e.g., it can calculate efficiency without using any empirical mass transfer and hydraulic correlations and models, and without the need to estimate the operational and hydraulic parameters of column. Therefore, it will be free of errors, limitations, and complexities of such empirical items. In addition, precision of the method does not decrease with increasing complexity of operating conditions and design parameters of column. The method can be used for efficiency calculation of any structured packing, including new ones, in distillation columns.  相似文献   
16.
This study investigated the effect of solubility of amphiphilic compounds of acidic crude oil in water on the surface and interfacial tension (IFT) with NaCl, MgCl2, CaCl2, and Na2SO4 salts. Accordingly, distilled water, along with the salts mentioned in zero ionic strength up to 2 mol were put in contact with crude oil to become saturated with amphiphilic compounds. The effects of these compounds were investigated on the properties of contact water by pH, total organic carbon (TOC), FTIR (Fourier transform infrared spectroscopy), water-air surface tension (ST), and water-n-decane IFT tests. The results showed that some of the organic components of crude oil, especially acidic and basic compounds, are present or soluble in water, which have a significant effect on reducing the surface and IFT. The IFT reduction of water-n-decane was greater than the water-air ST system. Also, the observations showed that for both NaCl and Na2SO4 salt water, with increasing ionic strength of water, there was an optimum salinity within the range of 0.1-0.25 mol/L for both salts with the amount of surface and IFT minimized at this point. In the other two salts, this point was delayed upon elevation of ionic strength and was observed at high salinity. In this case, divalent cations reduce tension rate compared to monovalent cations. Due to solubility of acidic and basic groups in water, pH of salt water illustrates an acidic trend. Results of the FTIR test confirmed solubility of these compounds as well.  相似文献   
17.
The performance of a multi-slit Integrated Micro Packed Bed Reactor-Heat Exchanger (IMPBRHE) for methanol synthesis from synthesis gas over Cu/ZnO/support commercial catalyst was experimentally investigated from a reaction engineering perspective. Through establishment of a systematic comparison strategy, performance comparison with a laboratory scale tubular Fixed-Bed Reactor (FBR) with three different dilution ratios was made to evaluate the IMPBRHE. The productivity, thermal behavior, activity of body materials, pressure drop and residence time distribution (RTD) of the two reactor types were investigated. The IMPBRHE outperformed the undiluted FBR and gave CO conversions comparable to the diluted FBRs. The main difference is ascribed to superior heat exchange properties of the IMPBRHE, which can improve reactor performance for an exothermic reaction such as methanol synthesis. The results reveal advantages of the IMPBRHE for robust scale up.  相似文献   
18.
Today's strict environmental laws pose significant challenges for coating's formulators to look for eco-friendly products. Powder coatings, particularly polyester/epoxy blends have demonstrated their ability as alternatives to traditional solvent-borne coatings. Recently, the use of nanoparticles such as nano-CaCO3 (nCaCO3) has been suggested as a beneficial strategy towards powder coating application with improved properties. Here, we study the effect of nCaCO3 on morphology, cure behavior, adhesion and hardness of polyester/epoxy systems. The nanoparticles shape, size and dispersion state were investigated through X-ray diffraction (XRD), transmission electron microscopy (TEM) and scanning electron microscopy (SEM) methods. Furthermore, isothermal cure characterization of the neat and filled systems was performed using a torque rheometer. The most important finding based on the rheological studies was the catalytic effect of nCaCO3 on cure reaction of polyester/epoxy, leading to the shorter curing time. Moreover, the kinetic analyses of rheograms revealed a marked decrease in the activation energy of the cure process upon raising nCaCO3 content. Interestingly, pull-off adhesion and hardness tests showed that the hardness and adhesion strength were dramatically increased by the addition of nCaCO3 into the polyester/epoxy system compared to pure blend resin. Therefore, considering the strong competition in powder coating market, the use of nCaCO3 as a commercial and inexpensive nanofiller is necessary not only to reduce the dwell time which has benefits in terms of the energy consumption and economics, but also to improve the performance of final polyester/epoxy coating.  相似文献   
19.
Synthetic dyes are widely used by several industries to color their products. The discharge of colored wastewater into the hydrosphere causes serious environmental problems. We used functionalized multi wall carbon nanotubes as an adsorbent for the adsorption of cationic dye, malachite green, from aqueous solution. Based on information provided by the Iranian Research Institute of Petroleum Industry, carbon nanotubes are produced using a chemical vapor deposition (CVD) technique. These as-received MWCNTs were functionalized by acid treatment. The remaining dye concentration was read by UV-visible absorption spectroscopy at maximum adsorption wavelength. The effect of different operational parameters such as contact time, pH of solution, adsorbent dose and initial dye concentration were studied. The results showed that by increasing of contact time, pH and adsorbent dose the removal of dye increased, but by increasing initial dye concentration, the removal efficiency decreased. Adsorption isotherms and kinetics behavior of f-MWCNTs for removal of malachite green was analyzed, and fitted to various existing models. The experimental data were well correlated with the Langmuir isotherm with a maximum adsorption capacity (q m ) and regression coefficient (R2) of 142.85 mg/g and 0.997, respectively. The results of this study indicate that functionalized multi wall carbon nanotubes can be used as an effective adsorbent for the removal of dyes.  相似文献   
20.
In this research, a novel method was reported for the synthesis of ZSM-5 nanozeolite. The ZSM-5 nanozeolite was modified by transition metals such as nickel, copper and iron. These nanozeolites were characterized using X-ray diffraction, scanning electronic microscopy, Fourier transform infrared and Energy-dispersive X-ray techniques. The synthesized Fe-ZSM-5 nanozeolite has been smaller average particle size than the other nanozeolites. Adsorption behavior of Acridine Orange (AO) onto nanozeolites has been studied in an aqueous medium using UV–VIS technique. The modified nanozeolites have more adsorption efficiency compared to the unmodified ZSM-5 nanozeolite for AO removal. Also, Fe-ZSM-5 nanozeolite was shown higher adsorption efficiency of AO than the other synthesized nanozeolites. Adsorption isotherms were fitted with the Langmuir, Freundlich and D–R models. The kinetic data were investigated using pseudo-first order and pseudo-second order models. The adsorption kinetics of AO on Fe-ZSM-5 nanozeolitewell matched with pseudo-second order kinetic model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号