首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
建筑科学   1篇
自动化技术   22篇
  2022年   2篇
  2021年   9篇
  2020年   2篇
  2019年   4篇
  2018年   1篇
  2016年   4篇
  2013年   1篇
排序方式: 共有23条查询结果,搜索用时 15 毫秒
11.
This research presents several non-linear models including empirical, artificial neural network (ANN), fuzzy system and adaptive neuro-fuzzy inference system (ANFIS) to estimate air-overpressure (AOp) resulting from mine blasting. For this purpose, Miduk copper mine, Iran was investigated and results of 77 blasting works were recorded to be utilized for AOp prediction. In the modeling procedure of this study, results of distance from the blast-face and maximum charge per delay were considered as predictors. After constructing the non-linear models, several performance prediction indices, i.e. root mean squared error (RMSE), variance account for (VAF), and coefficient of determination (R 2) and total ranking method are examined to choose the best predictive models and evaluation of the obtained results. It is obtained that the ANFIS model is superior to other utilized techniques in terms of R 2, RMSE, VAF and ranking herein. As an example, RMSE values of 5.628, 3.937, 3.619 and 2.329 were obtained for testing datasets of empirical, ANN, fuzzy and ANFIS models, respectively, which indicate higher performance capacity of the ANFIS technique to estimate AOp compared to other implemented methods.  相似文献   
12.
Neural Computing and Applications - Since determining the rock deformation directly in the laboratory is costly and time consuming, it is important to reliably determine/estimate this parameter...  相似文献   
13.
14.

This study aims to identify the suitability of hybridizing the firefly algorithm (FA), genetic algorithm (GA), and particle swarm optimization (PSO) with two well-known data-driven models of support vector regression (SVR) and artificial neural network (ANN) to predict blast-induced ground vibration. Here, these combinations are abbreviated using FA–SVR, PSO–SVR, GA–SVR, FA–ANN, PSO–ANN, and GA–ANN models. In addition, a modified FA (MFA) combined with SVR model is also proposed in this study, namely, MFA–SVR. The feasibility of the proposed models is examined using a case study, located in Johor, Malaysia. Then, to provide an objective assessment of performances of the predictive models, their results were compared based on several well known and popular statistical criteria. According to the results, the MFA–SVR with the coefficient of determination (R2) of 0.984 and root mean square error (RMSE) of 0.614 was more accurate model to predict PPV than the PSO–SVR with R2 = 0.977 and RMSE = 0.725, the FA–SVR with R2 = 0.964 and RMSE = 0.923, the GA–SVR with R2 = 0.957 and RMSE = 1.016, the GA–ANN with R2 = 0.936 and RMSE = 1.252, the FA–ANN with R2 = 0.925 and RMSE = 1.368, and the PSO–ANN with R2 = 0.924 and RMSE = 1.366. Consequently, the MFA–SVR model can be sufficiently employed in estimating the ground vibration, and has the capacity to generalize.

  相似文献   
15.

This study proposes a new uncertain rule-based fuzzy approach for the evaluation of blast-induced backbreak. The proposed approach is based on rock engineering systems (RES) updated by the fuzzy system. Additionally, a genetic algorithm (GA) and imperialist competitive algorithm (ICA) were employed for the prediction aim. The most key step in modeling of fuzzy RES is the coding of the interaction matrix. This matrix is responsible for analyzing the interrelationships among the parameters influencing the rock engineering activities. The codes of the interaction matrix are not unique; thus, probabilistic coding can be done non-deterministically, which allows the uncertainties to be considered in the RES analysis. To achieve the objective of this research, 62 blasts in Shur River dam region, located in south of Iran, were investigated and the required datasets were measured. The performance of the proposed models was then evaluated in accordance with the statistical criteria such as coefficient of determination (R2). The results signify the effectiveness of the proposed GA- and ICA-based models in the simulating process. R2 of 0.963 and 0.934 obtained from ICA- and GA-based models, respectively, revealed that both models were capable of predicting the backbreak. Further, the fuzzy RES was introduced as a powerful uncertain approach to evaluate and predict the backbreak.

  相似文献   
16.
The purpose of this article is to evaluate and predict blast-induced ground vibration at Shur River Dam in Iran using different empirical vibration predictors and artificial neural network (ANN) model. Ground vibration is a seismic wave that spreads out from the blasthole when explosive charge is detonated in a confined manner. Ground vibrations were recorded and monitored in and around the Shur River Dam, Iran, at different vulnerable and strategic locations. A total of 20 blast vibration records were monitored, out of which 16 data sets were used for training of the ANN model as well as determining site constants of various vibration predictors. The rest of the 4 blast vibration data sets were used for the validation and comparison of the result of ANN and different empirical predictors. Performances of the different predictor models were assessed using standard statistical evaluation criteria. Finally, it was found that the ANN model is more accurate as compared to the various empirical models available. As such, a high conformity (R 2 = 0.927) was observed between the measured and predicted peak particle velocity by the developed ANN model.  相似文献   
17.
Bulletin of Engineering Geology and the Environment - An accurate examination of deformability of rock samples in response to any change in stresses is deeply dependent on the reliable...  相似文献   
18.
Engineering with Computers - Liquefaction has caused many catastrophes during earthquakes in the past. When an earthquake is occurring, saturated granular soils may be subjected to the liquefaction...  相似文献   
19.
Engineering with Computers - Ground vibration is one of the most important undesirable effects induced by blasting operations in the mining or tunneling projects. Hence, developing a precise model...  相似文献   
20.

Air overpressure (AOp) is a hazardous effect induced by the blasting method in surface mines. Therefore, it needs to be predicted to reduce the potential risk of damage. The aim of this study is to offer an efficient method to predict AOp using a cascaded forward neural network (CFNN) trained by Levenberg–Marquardt (LM) algorithm, called the CFNN-LM model. Additionally, a generalized regression neural network (GRNN) and extreme learning machine (ELM) were employed to demonstrate the accuracy level of the proposed CFNN-LM model. To conduct the CFNN-LM, GRNN, and ELM models, an extensive database, related to four quarry sites in Malaysia, was used including 62 sets of dependent and independent parameters. Next, the performances of the aforementioned models were checked and discussed through statistical criteria and efficient graphical tools. Finally, the results showed the superiority of CFNN-LM (R2 = 0.9263 and RMSE = 3.0444) over GRNN (R2 = 0.7787 and RMSE = 5.1211) and ELM (R2 = 0.6984 and RMSE = 6.2537) models in terms of prediction accuracy. Furthermore, three different regression analysis metrics were used to perform the sensitivity analysis, and according to the obtained results, the maximum charge per delay (\(\beta\) = 0.475, SE = 0.115, t-test = 4.125) was considered as the most influential feature in modeling the AOp.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号