首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2327篇
  免费   44篇
  国内免费   4篇
电工技术   171篇
化学工业   519篇
金属工艺   31篇
机械仪表   57篇
建筑科学   25篇
矿业工程   2篇
能源动力   88篇
轻工业   208篇
水利工程   2篇
石油天然气   5篇
无线电   230篇
一般工业技术   327篇
冶金工业   497篇
原子能技术   76篇
自动化技术   137篇
  2023年   7篇
  2022年   27篇
  2021年   48篇
  2020年   16篇
  2019年   21篇
  2018年   26篇
  2017年   19篇
  2016年   33篇
  2015年   38篇
  2014年   44篇
  2013年   136篇
  2012年   77篇
  2011年   102篇
  2010年   73篇
  2009年   100篇
  2008年   102篇
  2007年   86篇
  2006年   71篇
  2005年   62篇
  2004年   56篇
  2003年   77篇
  2002年   62篇
  2001年   50篇
  2000年   37篇
  1999年   60篇
  1998年   196篇
  1997年   126篇
  1996年   97篇
  1995年   70篇
  1994年   46篇
  1993年   58篇
  1992年   24篇
  1991年   8篇
  1990年   18篇
  1989年   32篇
  1988年   15篇
  1987年   15篇
  1986年   24篇
  1985年   21篇
  1984年   18篇
  1983年   22篇
  1982年   12篇
  1981年   17篇
  1980年   17篇
  1978年   14篇
  1977年   22篇
  1976年   27篇
  1974年   9篇
  1973年   5篇
  1972年   5篇
排序方式: 共有2375条查询结果,搜索用时 0 毫秒
71.
A novel fabrication route to make macroporous silicon carbide (SiC) has been proposed in this study. The route is composed of the following two steps: the fabrication of porous α‐SiC/novolac‐type phenolic composite using hexamethylenetetramine (HMT) as a curing/blowing agent for the novolac monomer and a conventional reaction‐bonded (RB) sintering of the composite. The α‐SiC/novolac‐type phenolic composite was carbonized at 800°C for 2 h in N2 gas and then reacted with the molten silicon at 1450°C for 30 min under vacuum, resulting in the macroporous RB‐SiC with an open porosity of 48% and relatively large pore size of ~110 μm. The compressive strength of the macroporous RB‐SiC was 113 MPa, which is relatively high compared to those reported for macroporous SiC of equivalent porosities and pore sizes.  相似文献   
72.
Mannosylerythritol lipids (MELs), which are one of the representative sugar-based biosurfactants (BSs) produced by microorganisms, have attracted much attention in various fields in the sustainable development goals (SDGs) era. However, they are inseparable mixtures with respect to the chain length of the fatty acids. In this study, self-assembling properties and structure-activity relationship (SAR) studies of recovery effects on damaged skin cells using chemically synthesized MELs were investigated. It was revealed, for the first time, that synthetic and homogeneous MELs exhibited significant self-assembling properties to form droplets or giant vesicles. In addition, a small difference in the length of the fatty acid chains of the MELs significantly affected their recovery effects on the damaged skin cells. MELs with medium or longer length alkyl chains exhibited much higher recovery effects than that of C18-ceramide NP.  相似文献   
73.
Nitrogen-doped hydrogenated amorphous carbon thin films (a-C:N:H, N-doped DLC) were synthesized with microwave-assisted plasma-enhanced chemical vapor deposition widely used for DLC coating such as the inner surface of PET bottles. The electrochemical properties of N-doped DLC surfaces that can be useful in the application as an electrochemical sensor were investigated. N-doped DLC was easily fabricated using the vapor of nitrogen contained hydrocarbon as carbon and nitrogen source. A N/C ratio of resulting N-doped DLC films was 0.08 and atomic ratio of sp3/sp2-bonded carbons was 25/75. The electrical resistivity and optical gap were 0.695 Ω cm and 0.38 eV, respectively. N-doped DLC thin film was found to be an ideal polarizable electrode material with physical stability and chemical inertness. The film has a wide working potential range over 3 V, low double-layer capacitance, and high resistance to electrochemically induced corrosion in strong acid media, which were the same level as those for boron-doped diamond (BDD). The charge transfer rates for the inorganic redox species, Fe2+/3+ and Fe(CN)64−/3− at N-doped DLC were sufficiently high. The redox reaction of Ce2+/3+ with standard potential higher than H2O/O2 were observed due to the wider potential window. At N-doped DLC, the change of the kinetics of Fe(CN)63−/4− by surface oxidation is different from that at BDD. The rate of Fe(CN)63−/4− was not varied before and after oxidative treatment on N-doped DLC includes sp2 carbons, which indicates high durability of the electrochemical activity against surface oxidation.  相似文献   
74.
75.
76.

Abstract  

Cr/silicalite-1 and Cr/H[B]MFI catalysts were prepared by the impregnation method, and Cr/H[B]MFI were further treated by steaming. The catalysts were employed for the oxidative dehydrogenation of propane to propylene with CO2 as the oxidant. Cr/H[B]MFI showed significantly higher catalytic activity than Cr/silicalite-1, and steamed Cr/H[B]MFI was superior in the reaction stability to Cr/H[B]MFI. The nature of the supported chromium species have been characterized by a number of physicochemical techniques, such as Raman, UV–vis and NMR. It is concluded that the steaming led to the auto-reduction of some Cr6+ to Cr3+, and resultant Cr3+ species might be located near the boron center in the borosilicate framework to counterbalance the negative charge of the framework. The transformation of Cr6+ species to Cr3+ species, facilitated by the steaming process and the presence of boron in the catalyst, is responsible for the enhanced stability of oxidative dehydrogenation of propane to propylene with carbon dioxide as the oxidant.  相似文献   
77.
High‐proton‐conductive polymer electrolyte with a nanomatrix channel was prepared by graft copolymerization of styrene onto deproteinized natural rubber followed by sulfonation with chlorosulfonic acid. First, natural rubber latex was purified with urea in the presence of surfactant to remove almost all proteins present in the rubber. Second, graft copolymerization of styrene onto deproteinized natural rubber was carried out with tert‐butyl hydroperoxide/tetraethylenepentamine as an initiator at 30°C in latex stage. The graft‐copolymerized natural rubber (DPNR‐graft‐PS) was sulfonated with chlorosulfonic acid in chloroform solution at an ambient temperature. The resulting sulfonated DPNR‐graft‐PS was characterized by FTIR spectroscopy, solid state 13C CP/MAS NMR spectroscopy, elemental analysis, and transmission electron microscopy. High proton conductivity of about 0.1 S/cm, less water uptake of 24 wt % and comparatively good stress at break of 9 MPa were accomplished at suitable contents of styrene units and sulfur, i.e., 32 wt % and 75 mol %, respectively. The high proton conductivity, excellent stability, and good mechanical properties were associated with not only the formation of the nanomatrix channel but also a specific concentration of sulfuric acid group. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   
78.
Electrochemical characteristics for several redox systems at diamond films with highly ordered nanometer-scale cylindrical pores (‘nano-honeycombs’) were examined with cyclic voltammetry (CV) and electrochemical impedance measurements. The cyclic voltammetric anodic-cathodic peak separations for these nano-honeycomb electrodes were in the same range as those for polished polycrystalline diamond films, indicating that the involvement of the oxygen-terminated surface of the nano-pore walls, which should give rise to large peak separations for certain redox couples was only slight. Moreover, the peak currents in the CV were not enhanced to the extent expected on the basis of the roughness factors of the nano-honeycomb films. Ac impedance plots results indicated the existence of a concentration gradient of the reactant in the nano-pores, which is in agreement with theoretical predictions for charge transfer reactions in porous electrodes. The average concentration of the reactant (Fe2+/3+) inside the nano-pores was a factor of ca. 80 lower than that in the bulk electrolyte. The results of the impedance analysis also indicated an increase in the reaction resistances with decreasing pore diameters.  相似文献   
79.
The material coefficients of "soft" and "hard" lead zirconate titanate (PZT) ceramics were determined as complex values by the nonlinear least-squares-fitting of immittance data measured for length-extensional bar resonators. The piezoelectric d -constant should be a complex value to obtain a best fitting between observed and calculated results. Because the elastic, dielectric, and piezoelectric losses determined in this process were not "intrinsic" losses, a calculation process to evaluate the "intrinsic" losses was proposed. It was confirmed that the intrinsic losses were smaller than the corresponding extrinsic losses. The intrinsic piezoelectric loss existed in both soft and hard PZTs; ∼50% of the loss of piezoelectric d -constant was derived from the elastic and dielectric losses. The most notable difference between the soft and hard PZTs was observed in their elastic losses.  相似文献   
80.
High-strength porous alumina has been fabricated with a microstructure control using the pulse electric current sintering (PECS) technique. During sintering the discharge, which is assumed to take place in the voids between the particles, is thought to promote the bridging of particles by neck growth in the initial stages of sintering, leaving high porosity. The effect of dopants (MgO, 200 ppm; TiO2, 1000 ppm) and of secondary inclusions (3 vol% 3Y-TZP) on the constrained densification and the improvement in the mechanical behavior of porous alumina ceramics has been reported. The porosity of the fabricated porous alumina was controllable between 30% and 50% depending on the sintering temperature. The flexural strength of alumina having 30% and 42% porosity showed impressive values of 250 and 177 MPa, respectively. The dominance of the preferential neck growth of grains over densification significantly improved the mechanical properties of porous alumina, besides leaving high porosity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号