首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   0篇
化学工业   14篇
金属工艺   1篇
机械仪表   1篇
矿业工程   1篇
轻工业   4篇
石油天然气   1篇
无线电   4篇
原子能技术   1篇
自动化技术   11篇
  2022年   5篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2016年   1篇
  2015年   1篇
  2013年   4篇
  2012年   1篇
  2011年   4篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   2篇
  2005年   2篇
  2004年   3篇
  2003年   1篇
  2002年   1篇
  1998年   1篇
  1997年   1篇
  1982年   1篇
排序方式: 共有38条查询结果,搜索用时 7 毫秒
31.

This paper assesses the performance of the D-Wave 2X (DW) quantum annealer for finding a maximum clique in a graph, one of the most fundamental and important NP-hard problems. Because the size of the largest graphs DW can directly solve is quite small (usually around 45 vertices), we also consider decomposition algorithms intended for larger graphs and analyze their performance. For smaller graphs that fit DW, we provide formulations of the maximum clique problem as a quadratic unconstrained binary optimization (QUBO) problem, which is one of the two input types (together with the Ising model) acceptable by the machine, and compare several quantum implementations to current classical algorithms such as simulated annealing, Gurobi, and third-party clique finding heuristics. We further estimate the contributions of the quantum phase of the quantum annealer and the classical post-processing phase typically used to enhance each solution returned by DW. We demonstrate that on random graphs that fit DW, no quantum speedup can be observed compared with the classical algorithms. On the other hand, for instances specifically designed to fit well the DW qubit interconnection network, we observe substantial speed-ups in computing time over classical approaches.

  相似文献   
32.
The conventional treatment of neurodegenerative diseases (NDDs) is based on the “one molecule—one target” paradigm. To combat the multifactorial nature of NDDs, the focus is now shifted toward the development of small-molecule-based compounds that can modulate more than one protein target, known as “multi-target-directed ligands” (MTDLs), while having low affinity for proteins that are irrelevant for the therapy. The in silico approaches have demonstrated a potential to be a suitable tool for the identification of MTDLs as promising drug candidates with reduction in cost and time for research and development. In this study more than 650,000 compounds were screened by a series of in silico approaches to identify drug-like compounds with predicted activity simultaneously towards three important proteins in the NDDs symptomatic treatment: acetylcholinesterase (AChE), histone deacetylase 2 (HDAC2), and monoamine oxidase B (MAO-B). The compounds with affinities below 5.0 µM for all studied targets were additionally filtered to remove known non-specifically binding or unstable compounds. The selected four hits underwent subsequent refinement through in silico blood-brain barrier penetration estimation, safety evaluation, and molecular dynamics simulations resulting in two hit compounds that constitute a rational basis for further development of multi-target active compounds against NDDs.  相似文献   
33.
34.
A new method for the preparation of polybenzimidazole (PBI)‐based membranes, containing high concentrations of immobilized phosphonic acid groups, has been developed. The procedure used is carried out in two steps: (1) Synthesis of modified PBIs, containing 1,2‐dihydroxypropyl groups and preparation of films there from; (2) Introduction of vinylphosphonic acid (VPA) and initiator (cerium ammonium nitrate) in the film, subsequent grafting of VPA from the active sites of the PBI backbone. Membranes with different length of the grafted polyvinylphosphonic acid chains were prepared. The molar ratio grafted VPA units per PBI repeating unit reaches 7.8. Proton conductivity was measured at 120°C and relative humidity (RH) 20–100%. For the membrane with highest concentration of phosphonic acid groups the proton conductivity was 35 mS cm?1 at 100% RH and 8 mS cm?1 at 20% RH. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   
35.
We demonstrate how multiagent systems provide useful control techniques for modular self-reconfigurable (metamorphic) robots. Such robots consist of many modules that can move relative to each other, thereby changing the overall shape of the robot to suit different tasks. Multiagent control is particularly well-suited for tasks involving uncertain and changing environments. We illustrate this approach through simulation experiments of Proteo, a metamorphic robot system currently under development.  相似文献   
36.
We study the phenomenon of slow convergence in families of discrete dynamical systems where the iteration function has a Puiseux series representation. Such occurrence consists in the slow convergence of orbits near non-hyperbolic parametric periodic points. We provide a precise new definition of the slowness of convergence which is based on literature results for the critical exponents associated with parametric periodic points. Such exponents establish a general classification for slow systems and provide a measure of rates of convergence. For dynamical systems whose iteration functions have Taylor series expansions, the new definition is natural with wider applicability. However, it can be also used for iteration functions where a more sophisticated approach, such as a Lagrange expansion, is needed. In addition, we show that even for such iteration functions, the critical exponent can be easily computed. The presented theoretical results are illustrated by numerical examples having different rates of convergence.  相似文献   
37.
There are bacteria that can form strong biofilms in porous media. These biofilms can be used as biobarriers to restrict the flow of pollutants. For certain contaminants, a second species of bacteria that can actually react with the contaminants can be added to the biobarrier to actually degrade the pollutants. We propose some mathematical models for the formation of these reacting biobarriers under different hypotheses, and numerically solve the resulting equations for the flow, transport and reactions. Qualitative comparisons with some experimental results are also given.  相似文献   
38.
Targeting dysregulated Ca2+ signaling in cancer cells is an emerging chemotherapy approach. We previously reported that store-operated Ca2+ entry (SOCE) blockers, such as RP4010, are promising antitumor drugs for esophageal cancer. As a tyrosine kinase inhibitor (TKI), afatinib received FDA approval to be used in targeted therapy for patients with EGFR mutation-positive cancers. While preclinical studies and clinical trials have shown that afatinib has benefits for esophageal cancer patients, it is not known whether a combination of afatinib and RP4010 could achieve better anticancer effects. Since TKI can alter intracellular Ca2+ dynamics through EGFR/phospholipase C-γ pathway, in this study, we evaluated the inhibitory effect of afatinib and RP4010 on intracellular Ca2+ oscillations in KYSE-150, a human esophageal squamous cell carcinoma cell line, using both experimental and mathematical simulations. Our mathematical simulation of Ca2+ oscillations could fit well with experimental data responding to afatinib or RP4010, both separately or in combination. Guided by simulation, we were able to identify a proper ratio of afatinib and RP4010 for combined treatment, and such a combination presented synergistic anticancer-effect evidence by experimental measurement of intracellular Ca2+ and cell proliferation. This intracellular Ca2+ dynamic-based mathematical simulation approach could be useful for a rapid and cost-effective evaluation of combined targeting therapy drugs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号