Multibody System Dynamics - Computational prediction of 3D crutch-assisted walking patterns is a challenging problem that could be applied to study different biomechanical aspects of crutch walking... 相似文献
Multibody System Dynamics - A multibody dynamics-based solution to the fluid dynamics problem is compared herein to two established Lagrangian-based techniques used by the computational fluid... 相似文献
Palmprint recognition and palm vein recognition are two emerging biometrics technologies. In the past two decades, many traditional methods have been proposed for palmprint recognition and palm vein recognition, and have achieved impressive results. However, the research on deep learning-based palmprint recognition and palm vein recognition is still very preliminary. In this paper, in order to investigate the problem of deep learning based 2D and 3D palmprint recognition and palm vein recognition in-depth, we conduct performance evaluation of seventeen representative and classic convolutional neural networks (CNNs) on one 3D palmprint database, five 2D palmprint databases and two palm vein databases. A lot of experiments have been carried out in the conditions of different network structures, different learning rates, and different numbers of network layers. We have also conducted experiments on both separate data mode and mixed data mode. Experimental results show that these classic CNNs can achieve promising recognition results, and the recognition performance of recently proposed CNNs is better. Particularly, among classic CNNs, one of the recently proposed classic CNNs, i.e., EfficientNet achieves the best recognition accuracy. However, the recognition performance of classic CNNs is still slightly worse than that of some traditional recognition methods.
In the post-genomic era, proteomics has achieved significant theoretical and practical advances with the development of high-throughput technologies. Especially the rapid accumulation of protein-protein interactions (PPIs) provides a foundation for constructing protein interaction networks (PINs), which can furnish a new perspective for understanding cellular organizations, processes, and functions at network level. In this paper, we present a comprehensive survey on three main characteristics of PINs: centrality, modularity, and dynamics. 1) Different centrality measures, which are used to calculate the importance of proteins, are summarized based on the structural characteristics of PINs or on the basis of its integrated biological information; 2) Different modularity definitions and various clustering algorithms for predicting protein complexes or identifying functional modules are introduced; 3) The dynamics of proteins, PPIs and sub-networks are discussed, respectively. Finally, the main applications of PINs in the complex diseases are reviewed, and the challenges and future research directions are also discussed. 相似文献
Journal of Central South University - Possessing the unique and highly valuable properties, graphene sheets (GSs) have attracted increasing attention including that from the building engineer due... 相似文献
Journal of Applied Electrochemistry - The electrocatalytic reduction of CO2 is a promising research direction in resource utilization and sustainable energy development. However, there is still a... 相似文献