The Journal of Supercomputing - This paper designs and develops a computational intelligence-based framework using convolutional neural network (CNN) and genetic algorithm (GA) to detect COVID-19... 相似文献
Binary image representation is essential format for document analysis. In general, different available binarization techniques are implemented for different types of binarization problems. The majority of binarization techniques are complex and are compounded from filters and existing operations. However, the few simple thresholding methods available cannot be applied to many binarization problems. In this paper, we propose a local binarization method based on a simple, novel thresholding method with dynamic and flexible windows. The proposed method is tested on selected samples called the DIBCO 2009 benchmark dataset using specialized evaluation techniques for binarization processes. To evaluate the performance of our proposed method, we compared it with the Niblack, Sauvola and NICK methods. The results of the experiments show that the proposed method adapts well to all types of binarization challenges, can deal with higher numbers of binarization problems and boosts the overall performance of the binarization. 相似文献
This paper presents a super-resolution (SR) technique for enhancement of infrared (IR) images. The suggested technique relies on the image acquisition model, which benefits from the sparse representations of low-resolution (LR) and high-resolution (HR) patches of the IR images. It uses bicubic interpolation and minimum mean square error (MMSE) estimation in the prediction of the HR image with a scheme that can be interpreted as a feed-forward neural network. The suggested algorithm to overcome the problem of having only LR images due to hardware limitations is represented with a big data processing model. The performance of the suggested technique is compared with that of the standard regularized image interpolation technique as well as an adaptive block-by-block least-squares (LS) interpolation technique from the peak signal-to-noise ratio (PSNR) perspective. Numerical results reveal the superiority of the proposed SR technique.
Effect of debittered salmon frame hydrolysate (DSFH) at various levels (0, 5, 10, 15, 20 and 25 g/100 g) on physicochemical, textural, sensory and nutritional properties of biscuits was investigated. The highest thickness was obtained for the sample with 25 g/100 g DSFH (P < 0.05). There was no difference in diameter among all the biscuit samples (P > 0.05). The samples added with DSFH had lower weight, water activity and moisture content than the control (CONT, without DSFH) (P < 0.05). DSFH at 15 g/100 g showed no detrimental effect on sensory properties of resulting biscuits (DSFH-15). The DSFH-15 biscuit showed reduction in cutting force and fracturability. Scanning electron microscopic and cross-sectional images showed that DSFH-15 biscuit had more porous structure, compared to the CONT. The biscuits fortified with 15 g/100 g DSFH had higher protein but had lower energy value, fat and carbohydrate content than the CONT. 相似文献
The current study was conducted to elucidate the impact of encapsulation on the stability and viability of probiotic bacteria (Bifidobacterium bifidum) in cheddar cheese and in vitro gastrointestinal conditions. Purposely, probiotics were encapsulated in two hydrogel materials (kepa carrageenan and sodium alginate) by using an internal gelation method. Cheddar cheese was supplemented with unencapsulated/free and encapsulated probiotics. The product was subjected to physicochemical (pH, titrable acidity, moisture, and protein) and microbiological analysis for a period of 35 days of storage. Furthermore, the probiotics (free and encapsulated) were subjected to simulated gastrointestinal conditions. The initial probiotic count in cheese containing encapsulated probiotic was 9.13 log CFU/g and 9.15 log CFU/g which decreased to 8.10 log CFU/g and 7.67 log CFU/g while cheese containing unencapsulated probiotic initially 9.18 log CFU/g decreased to 6.58 log CFU/g over a period of 35 days of storage. The incorporation of unencapsulated and encapsulated probiotic affected the physicochemical, microbiological, and sensory attributes of the cheese. The encapsulated probiotic bacteria exhibited better survival as compared to unencapsulated probiotic. A 2.60 CFU/g log reduction in unencapsulated cells while just 1.03 CFU/g and 1.48 CFU/g log reduction in case of sodium alginate and K‐carrageenan, respectively, was recorded. In short, encapsulation showed protection and stability to probiotic in hostile conditions. 相似文献
Removal by absorptive ceramic membranes can simultaneously absorb and separate metal ions from water. Alumina/yttria‐stabilized zirconia (Al2O3/YSZ) hollow‐fiber membranes, fabricated using phase inversion and sintering process, were deposited with iron oxide by an in‐situ hydrothermal process. The results showed that α‐Fe2O3 was produced and incorporated across the membranes. A reduction in flux was recorded with the deposition of α‐Fe2O3. However, it improved the adsorption capacity for heavy metal adsorption. The adsorption‐separation test demonstrated that the optimized membrane is able to completely remove Pb(II) ions after two hours. 相似文献
The synthesis of silver nanoparticles for silver ink formation has attracted broad interest in the electronic part printing and semiconductor chip industry due to the extraordinary electrical and mechanical properties of these materials. The preparation of silver nanoparticles through a physical or chemical reduction process is the most common methodology applied to obtain nanoparticles with the required size, shape and surface morphology. The chemical solution or solvent carrier applied for silver ink formulation must be applied simultaneously with the direct writing technique to produce the desired adherence, viscosity, and reliable performance. This review paper discusses the details concerning the past and recent advancement of the synthesis and characterization of silver nanoparticles and silver ink formation. A review on the advantages of various sintering techniques, which aim to achieve the electrical and mechanical properties of the required printed structure, is also included. A brief summary concerning the recent challenges and improvement approaches is presented at the end of this review. 相似文献
Biogenic nanoarchitectured magnetic materials have drawn serious attention throughout the last decade. We have attempted the Helleborus niger flower extract functionalized and templated biogenic synthesis of Cu nanoparticles supported Fe3O4 as a likewise novel material. The plant phytomolecules were deployed as a non-toxic sustainable reductant and an outstanding capping agent to stabilize the synthesized NPs. The synthesized Cu/H.niger@Fe3O4 nanocomposite was undergone comprehensive characterizations through Fourier transformed infrared spectroscopy (FT-IR), electron microscopy (SEM and TEM), energy dispersive X-ray spectroscopy (EDX), elemental mapping, vibrating sample magnetometer (VSM), X-ray diffraction (XRD) and inductively coupled plasma (ICP) techniques. The material was catalytically explored in the synthesis of diverse pyrano[3,2-c]chromene derivatives by coupling 4-hydroxycoumarin, malononitrile and a range of aldehydes in hot water when it afforded excellent yields. Based on its core magnetism, the catalyst was easily recovered using a magnet and reused for 8 successive times without considerable loss in catalytic activity. After the chemical application, the synthesized Cu/H.niger@Fe3O4 nanocomposite was engaged in biological assays like study of anti-oxidant properties by DPPH mediated free radical scavenging test using BHT as a reference molecule. Thereafter, on having a significant IC50 value in radical scavenging assay, we extended the bio-application of the desired nanocomposite in anticancer study of A549 and H358 human lung cell lines in-vitro through MTT assay. The cell viability of malignant lung cell line reduced dose-dependently in the presence of desired nanocomposite. So, these results suggest that synthesized Cu/H.niger@Fe3O4 as a chemotherapeutic nanomaterial have a suitable anticancer activity against lung cell lines.
Fine bamboo strips (BSs) have been laid on polypropylene (PP) web, stacked, and compression molded to prepare unconsolidated light-weight (0.312 g/cm3) composites. Composite properties are superior compared with jute-based composites and bamboo strips show potential to replace fiberglass or polyurethane in composites. Flexural strength, modulus, offset yield load, and Noise Reduction Coefficient (NR) of the BS–PP composites are 5.8×, 2.9×, 6.5×, and 1.4× higher, respectively, compared to jute–PP composites. Bamboo-based non-consolidated composites with excellent mechanical and sound absorption properties utilizing the methods described in this research provide an opportunity to manufacture functional composites with bio-based materials leading to reduction of environmental pollution and sustainable manufacturing. 相似文献
Microcapsules filled with liquid solvents for CO2 absorption can be easily deformed due to their elastic polymer shells. We present a combination of experiments and model predictions to demonstrate that modest compressive forces can lead to significant capsule deformation and performance issues for this enabling technology. Contrary to expectations based on Raoult's law, capsules containing aqueous carbonate solution were found to lose water to flows of humidified nitrogen in centimeter-scale packed beds. Water loss increased with gas velocity, suggesting compression was responsible for mass transfer, an interpretation supported by microscope images of deformed and broken capsules. A model for compression induced mass transfer under packed/fluidized bed operating conditions was developed and validated with the experimental data for a range of conditions (gas velocities, temperatures, humidities). Design criteria for future generations of microcapsules that will more effectively resist compression are evaluated. 相似文献