首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1047篇
  免费   99篇
  国内免费   3篇
电工技术   28篇
综合类   1篇
化学工业   221篇
金属工艺   11篇
机械仪表   43篇
建筑科学   26篇
矿业工程   2篇
能源动力   25篇
轻工业   108篇
水利工程   7篇
石油天然气   4篇
无线电   190篇
一般工业技术   249篇
冶金工业   84篇
原子能技术   4篇
自动化技术   146篇
  2024年   2篇
  2023年   15篇
  2022年   26篇
  2021年   56篇
  2020年   24篇
  2019年   30篇
  2018年   39篇
  2017年   37篇
  2016年   42篇
  2015年   32篇
  2014年   52篇
  2013年   63篇
  2012年   73篇
  2011年   78篇
  2010年   34篇
  2009年   50篇
  2008年   48篇
  2007年   43篇
  2006年   40篇
  2005年   22篇
  2004年   37篇
  2003年   17篇
  2002年   29篇
  2001年   25篇
  2000年   20篇
  1999年   28篇
  1998年   42篇
  1997年   20篇
  1996年   16篇
  1995年   9篇
  1994年   7篇
  1993年   16篇
  1992年   3篇
  1991年   6篇
  1990年   6篇
  1989年   6篇
  1988年   4篇
  1987年   7篇
  1986年   7篇
  1985年   5篇
  1983年   5篇
  1982年   2篇
  1980年   3篇
  1977年   4篇
  1976年   7篇
  1974年   1篇
  1971年   2篇
  1969年   1篇
  1968年   1篇
  1962年   3篇
排序方式: 共有1149条查询结果,搜索用时 31 毫秒
11.
Semi‐interpenetrating polymer network (semi‐IPN) and fully interpenetrating polymer network (full‐IPN) hydrogels composed of alginate and poly(N‐isopropylacrylamide) were prepared with γ‐ray irradiation. The semi‐IPN hydrogels were prepared through the irradiation of a mixed solution composed of alginate and N‐isopropylacrylamide (NIPAAm) monomer to simultaneously achieve the polymerization and self‐crosslinking of NIPAAm. The full‐IPN hydrogels were formed through the immersion of the semi‐IPN film in a calcium‐ion solution. The results for the swelling and deswelling behaviors showed that the swelling ratio of semi‐IPN hydrogels was higher than that of full‐IPN hydrogels. A semi‐IPN hydrogel containing more alginate exhibited relatively rapid swelling and deswelling rates, whereas a full‐IPN hydrogel showed an adverse tendency. All the hydrogels with NIPAAm exhibited a change in the swelling ratio around 30–40°C, and full‐IPN hydrogels showed more sensitive and reversible behavior than semi‐IPN hydrogels under a stepwise stimulus. In addition, the swelling ratio of the hydrogels continuously increased with the pH values, and the swelling processes were proven to be repeatable with pH changes. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4439–4446, 2006  相似文献   
12.
13.
Accurate estimation of the attitude of unmanned aerial vehicles (UAVs) is crucial for their control and displacement. Errors in the attitude estimate may misuse the limited battery energy of UAVs or even cause an accident. For attitude estimation, proprioceptive sensors such as inertial measurement units (IMUs) are widely applied, but they are susceptible to inertial guidance error. With antenna arrays currently being installed in UAVs for communication with ground base stations, we can take advantage of the array structure in order to improve the estimates of IMUs via data fusion. In this paper, we therefore propose an attitude estimation system based on a hexagon-shaped 7-element electronically steerable parasitic antenna radiator (ESPAR) array. The ESPAR array is well-suited for installment in the UAVs with broad wings and short bodies. Our proposed solution returns an estimation for the pitch and roll based on the inter-element phase delay estimates of the line-of-sight path of the impinging signal over the antenna array. By exploiting the parallel and centrosymmetric structure in the hexagon-shaped ESPAR array, the 3-dimensional Unitary ESPRIT algorithm is applied for phase delay estimation to achieve high accuracy as well as computational efficiency. We devise an attitude estimation algorithm by exploiting the geometrical relationship between the UAV attitude and the estimated phase delays. An analytical closed-form expression of the attitude estimates is obtained by solving the established simultaneous nonlinear equations. Simulations results show the feasibility of our proposed solution for different signal-to-noise ratio levels as well as multipath scenarios.  相似文献   
14.
15.
The rapidly increasing solar conversion efficiency (PCE) of hybrid organic–inorganic perovskite (HOIP) thin-film semiconductors has triggered interest in their use for direct solar-driven water splitting to produce hydrogen. However, application of these low-cost, electronic-structure-tunable HOIP tandem photoabsorbers has been hindered by the instability of the photovoltaic-catalyst-electrolyte (PV+E) interfaces. Here, photolytic water splitting is demonstrated using an integrated configuration consisting of an HOIP/n+silicon single junction photoabsorber and a platinum (Pt) thin film catalyst. An extended electrochemical (EC) lifetime in alkaline media is achieved using titanium nitride on both sides of the Si support to eliminate formation of insulating silicon oxide, and as an effective diffusion barrier to allow high-temperature annealing of the catalyst/TiO2-protected-n+silicon interface necessary to retard electrolytic corrosion. Halide composition is examined in the (FA1-xCsx)PbI3 system with a bandgap suitable for tandem operation. A fill factor of 72.5% is achieved using a Spiro-OMeTAD-hole-transport-layer (HTL)-based HOIP/n+Si solar cell, and a high photocurrent density of −15.9 mA cm−2 (at 0 V vs reversible hydrogen electrode) is attained for the HOIP/n+Si/Pt photocathode in 1 m NaOH under simulated 1-sun illumination. While this thin-film design creates stable interfaces, the intrinsic photo- and electro-degradation of the HOIP photoabsorber remains the main obstacle for future HOIP/Si tandem PEC devices.  相似文献   
16.
High‐quality and large‐area molybdenum disulfide (MoS2) thin film is highly desirable for applications in large‐area electronics. However, there remains a challenge in attaining MoS2 film of reasonable crystallinity due to the absence of appropriate choice and control of precursors, as well as choice of suitable growth substrates. Herein, a novel and facile route is reported for synthesizing few‐layered MoS2 film with new precursors via chemical vapor deposition. Prior to growth, an aqueous solution of sodium molybdate as the molybdenum precursor is spun onto the growth substrate and dimethyl disulfide as the liquid sulfur precursor is supplied with a bubbling system during growth. To supplement the limiting effect of Mo (sodium molybdate), a supplementary Mo is supplied by dissolving molybdenum hexacarbonyl (Mo(CO)6) in the liquid sulfur precursor delivered by the bubbler. By precisely controlling the amounts of precursors and hydrogen flow, full coverage of MoS2 film is readily achievable in 20 min. Large‐area MoS2 field effect transistors (FETs) fabricated with a conventional photolithography have a carrier mobility as high as 18.9 cm2 V?1 s?1, which is the highest reported for bottom‐gated MoS2‐FETs fabricated via photolithography with an on/off ratio of ≈105 at room temperature.  相似文献   
17.
The aim of this study was to evaluate antiproliferative sirolimus- and antioxidative alpha-lipoic acid (ALA)-eluting stents using biodegradable polymer [poly-l-lactic acid (PLA)] in a porcine coronary overstretch restenosis model. Forty coronary arteries of 20 pigs were randomized into four groups in which the coronary arteries had a bare metal stent (BMS, n = 10), ALA-eluting stent with PLA (AES, n = 10), sirolimus-eluting stent with PLA (SES, n = 10), or sirolimus- and ALA-eluting stent with PLA (SAS, n = 10). A histopathological analysis was performed 28 days after the stenting. The ALA and sirolimus released slowly over 30 days. There were no significant differences between groups in the injury or inflammation score; however, there were significant differences in the percent area of stenosis (56.2 ± 11.78 % in BMS vs. 51.5 ± 12.20 % in AES vs. 34.7 ± 7.23 % in SES vs. 28.7 ± 7.30 % in SAS, P < 0.0001) and fibrin score [1.0 (range 1.0–1.0) in BMS vs. 1.0 (range 1.0–1.0) in AES vs. 2.0 (range 2.0–2.0) in SES vs. 2.0 (range 2.0–2.0) in SAS, P < 0.0001] between the four groups. The percent area of stenosis based on micro-computed tomography corresponded with the restenosis rates based on histopathological stenosis in different proportions in the four groups (54.8 ± 7.88 % in BMS vs. 50.4 ± 14.87 % in AES vs. 34.5 ± 7.22 % in SES vs. 28.9 ± 7.22 % in SAS, P < 0.05). SAS showed a better neointimal inhibitory effect than BMS, AES, and SES at 1 month after stenting in a porcine coronary restenosis model. Therefore, SAS with PLA can be a useful drug combination for coronary stent coating to suppress neointimal hyperplasia.  相似文献   
18.
This study focuses on the applicability of single-atom Mo-doped graphitic carbon nitride (GCN) nanosheets which are specifically engineered with high surface area (exfoliated GCN),  NH2 rich edges, and maximum utilization of isolated atomic Mo for propylene carbonate (PC) production through CO2 cycloaddition of propylene oxide (PO). Various operational parameters are optimized, for example, temperature (130 °C), pressure (20 bar), catalyst (Mo2GCN), and catalyst mass (0.1 g). Under optimal conditions, 2% Mo-doped GCN (Mo2GCN) has the highest catalytic performance, especially the turnover frequency (TOF) obtained, 36.4 h−1 is higher than most reported studies. DFT simulations prove the catalytic performance of Mo2GCN significantly decreases the activation energy barrier for PO ring-opening from 50–60 to 4.903 kcal mol−1. Coexistence of Lewis acid/base group improves the CO2 cycloaddition performance by the formation of coordination bond between electron-deficient Mo atom with O atom of PO, while  NH2 surface group disrupts the stability of CO2 bond by donating electrons into its low-level empty orbital. Steady-state process simulation of the industrial-scale consumes 4.4 ton h−1 of CO2 with PC production of 10.2 ton h−1. Techno-economic assessment profit from Mo2GCN is estimated to be 60.39 million USD year−1 at a catalyst loss rate of 0.01 wt% h−1.  相似文献   
19.
A new nonlinear dynamical analysis is applied to complex behavior from neuronal systems. The conceptual foundation of this analysis is the abstraction of observed neuronal activities into a dynamical landscape characterized by a hierarchy of "unstable periodic orbits" (UPOs). UPOs are rigorously identified in data sets representative of three different levels of organization in mammalian brain. An analysis based on UPOs affords a novel alternative method of decoding, predicting, and controlling these neuronal systems.  相似文献   
20.
Electrolytic deposition has been widely used to immobilize biomacromolecules, and it is always the most important factor to preserve or even increase an activity of the immobilized protein. We report here simple and rather universal method for the highly efficient immobilization of laccase for amperometric biosensing. Laccase from Cerrena unicolor has been successfully immobilized (electrolytic deposition) on the surface of thin, ordered polythiophene films (3-methylthiophene/3-thiopheneacetic acid/N-heptyl-3,6-bis(2-thiophene)carbazole). Two different compounds capable of mediating laccase-catalyzed reactions have been tested by cyclic voltammetry. They exhibited quasi-reversible electrodic behaviour with formal redox potentials ranging from 68 and 918 mV (E0vs. SCE). The immersion of the laccase-coated electrode in solution with substrate generated large catalytic currents easily recorded by cyclic voltammetry at low potential scan rates. Considering the fact, that immobilization strategy showed high efficiency, obtained results suggest that method for phenoloxidase immobilization has a great potential of enabling high throughput fabrication of bioelectronics’ devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号