首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5091篇
  免费   654篇
  国内免费   9篇
电工技术   79篇
综合类   2篇
化学工业   1510篇
金属工艺   153篇
机械仪表   287篇
建筑科学   52篇
能源动力   297篇
轻工业   597篇
水利工程   10篇
石油天然气   3篇
无线电   842篇
一般工业技术   1284篇
冶金工业   161篇
原子能技术   75篇
自动化技术   402篇
  2024年   2篇
  2023年   63篇
  2022年   84篇
  2021年   182篇
  2020年   140篇
  2019年   208篇
  2018年   208篇
  2017年   227篇
  2016年   301篇
  2015年   238篇
  2014年   332篇
  2013年   391篇
  2012年   414篇
  2011年   497篇
  2010年   335篇
  2009年   322篇
  2008年   253篇
  2007年   233篇
  2006年   192篇
  2005年   139篇
  2004年   147篇
  2003年   126篇
  2002年   118篇
  2001年   116篇
  2000年   103篇
  1999年   86篇
  1998年   78篇
  1997年   39篇
  1996年   35篇
  1995年   31篇
  1994年   18篇
  1993年   16篇
  1992年   17篇
  1991年   10篇
  1990年   9篇
  1989年   16篇
  1988年   6篇
  1987年   5篇
  1986年   4篇
  1985年   3篇
  1984年   2篇
  1981年   1篇
  1977年   2篇
  1976年   3篇
  1975年   1篇
  1974年   1篇
排序方式: 共有5754条查询结果,搜索用时 62 毫秒
71.
Selective CO oxidation in the presence of excess hydrogen was studied over supported Pt catalysts promoted with various transition metal compounds such as Cr, Mn, Fe, Co, Ni, Cu, Zn, and Zr. CO chemisorption, XRD, TPR, and TPO were conducted to characterize active catalysts. Among them, Pt-Ni/γ-Al2O3 showed high CO conversions over wide reaction temperatures. For supported Pt-Ni catalysts, Alumina was superior to TiO2 and ZrO2 as a support. The catalytic activity at low temperatures increased with increasing the molar ratio of Ni/Pt. This accompanied the TPR peak shift to lower temperatures. The optimum molar ratio between Ni and Pt was determined to be 5. This Pt-Ni/γ A12O3 showed no decrease in CO conversion and CO2 selectivity for the selective CO oxidation in the presence of 2 vol% H2O and 20 vol% CO2. The bimetallic phase of Pt-Ni seems to give rise to stable activity with high CO2 selectivity in selective oxidation of CO in H2-rich stream.  相似文献   
72.
The removal of hydrogen sulfide (H2S) from simulated gas was carried out in a batch type fluidized-bed reactor using natural manganese ore (NMO), which consists of several metal oxides (MnOx: 51.85%, FeOy: 3.86%, CaO: 0.11%). The H2S breakthrough curves were obtained by changing temperature, gas velocity, initial H2S concentration, and aspect ratio. Moreover, the effects of the particle size and the particle-mixing fraction on H2S removal were investigated in a binary system of different particle size. From this study, H2S removal efficiency increased with increasing temperature but decreased with increasing excess gas velocity. The breakthrough time for H2S decreased as the gas velocity increased, which leads to reducing gas-solid contacting due to gas bypassing in a fluidized bed reactor. Improvement of H2S removal efficiency in continuous process can be expected from the results of the binary particle system with different size in a batch experiment. The NMO could be considered as a potential sorbent in H2S removal.  相似文献   
73.
Native corn starch‐ and hydroxypropylated starch (HPS‐) based plastic films were prepared using the short pulp fiber as the reinforcement and the glycerol as the plasticizer. The results of tensile test showed that the strain and stress at break and elastic modulus increased with pulp content. With glycerol content, the strain at break increased considerably, but the breaking stress and elastic modulus decreased. And the stress–strain curves showed that the brittleness problem of films was overcome by the pulp, glycerol, and water content. The hydroxypropyl starch films showed results similar to those of the native starch films. The results of the three‐point bending test showed that maximum deflection, flexural strength, and specific work increased with pulp content, but the flexural modulus was the highest at a pulp content of 20%. And with the glycerol content, the maximum deflection and specific work of rupture increased, but the bending elastic modulus decreased. The hydroxypropyl starch films showed results similar to those of native starch films as far as the maximum deflection and flexural strength were concerned, but the bending elastic modulus and specific work of the hydroxypropyl starch films were considerably lower than those of starch films. So it was concluded that the flexibility of films was improved by the hydroxypropylation. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 2108–2117, 2003  相似文献   
74.
A crystallization monitoring system using a quartz crystal oscillator was utilized to predict different shapes of crystal formation by measuring crystal growth rate and to measure supersaturation. Applying different rates of cooling, crystal formation of different shapes was induced, and the frequency variation of the oscillator and the crystal shape observed with an SEM were compared to determine how the frequency variation can be interpreted for the prediction of produced crystal shape. The experimental results obtained from the crystallization of potassium nitrate and cupric sulfate solutions showed that the proposed frequency measurement technique could be applied in the prediction of crystal shape of cooling crystallization processes. In addition, supersaturation was determined from the measurements of solution and coolant temperatures.  相似文献   
75.
An increase in the depolymerization of chitosan was found with an increased concentration of sodium perborate. Acetic anhydride was added to reacetylated chitosan in a molar ratio per gulcosamine unit, and the amide I band of IR spectra changed with the addition of acetic anhydride. Sixteen chitosans with various molecular weights (MWs) and degrees of deacetylation (DODs) were prepared. X‐ray diffraction patterns indicated their amorphous and partially crystalline states. Increases in the chitosan MW and DOD increased the tensile strength (TS). TS of the chitosan films ranged from 22 to 61 MPa. However, the elongation (E) of chitosan films did not show any difference with MW. TS of chitosan films decreased with the reacetylation process. However, E of chitosan films was not dependent on DOD. The water vapor permeabilities (WVPs) of the chitosan films without a plasticizer were between 0.155 and 0.214 ng m/m2 s Pa. As the chitosan MW increased, the chitosan film WVP increased, but the values were not significantly different. Moreover, the WVP values were not different from low DOD to high DOD. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3476–3484, 2003  相似文献   
76.
A mathematical model for an absorption of nitrogen oxides into water in packed column was developed based on the mass-transfer coefficient in packed column and the chemical reaction accompanying NO x absorption produces HNO3 and HNO2 in the liquid phase. The subsequent dissociation of HNO2 in the liquid-phase results in the formation of HNO3 and NO gas, and then this NO gas follows to be oxidized by O2 in air. The important factors influenced on the absorption of NO x are the oxidation state of NO gas and the partial pressure of nitrogen oxides in the gas. The efficiency of NO x absorption increases with the increase of the partial pressure of NO x . The most critical value for using the model is the constant of .The selection of 11×10−4kg·mol/atm·m2·sec for resonable for this model.  相似文献   
77.
The mixing cycle‐dependent degree of dispersion and degree of mixing of a calcite (calcium carbonate) agglomerate in high‐density polyethylene (HDPE), low‐density polyethylene (LDPE), and linear low‐density polyethylene (LLDPE) matrices upon stretching was investigated using three different techniques: mechanical property, morphological behavior, and image analyzer analyses. The mechanical properties analyzed in terms of the tensile strength and maximum elongation resulted in that the second mixing was the best for giving a better property for all systems except the LDPE system, which exhibited no significant difference between the second and third mixings. The morphological behavior of the three compounds were different, but no distinctive difference was observed to differentiate the degree of mixing from system to system. The number‐, weight‐, and z + 1‐average diameters of the air hole and the aspect ratio upon the stretching and mixing cycle were calculated to analyze the degree of mixing of the calcite‐filled composites. As a consequence, no difference in the average diameter of the air hole was obtained among the three systems, but the aspect ratios of the air hole varied significantly. Thus, the degree of dispersion and the degree of mixing may be influenced by the average calcite agglomerate size, the average diameter of the air hole, and the aspect ratio upon stretching and mixing cycles. Those factors would be formed by the difference in chemical characteristics upon various microstructures of polyethylene and its molecular weight and molecular weight distribution. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 311–321, 2003  相似文献   
78.
A series of nanocomposites prepared by melt‐blending of cloisite‐based organoclays with poly(ethylene‐vinylacetate) (EVA) and neutralized poly (ethylene‐methacrylic acid) (EMA) copolymers were investigated via DSC, small‐angle X‐ray scattering (SAXS), and rheological techniques. SAXS results indicated partial clay exfoliation in all samples. In both EMA and EVA systems, the nominal melting temperature Tm and bulk crystallinity are not significantly affected by the presence of organoclays, suggesting that clay particles are predominantly confined in the amorphous phase. In rheological measurements (above Tm), the EVA‐clay system demonstrated a solid‐like rheological behavior under the small‐strain oscillatory shear, yet it was able to yield and flow under a steady shear, which is the characteristic of physical crosslinking. In contrast, the EMA‐clay system exhibited a melt‐like rheological behavior, where the influence of organoclay on the thermorheological behavior of the EMA composite was quite minimal. We propose that the carbonyl groups of vinylacetate in EVA interact with the clay surface, resulting in a strong physically crosslinking like interaction in the melt. On the other hand, the interaction between EMA and clay is weak because of repulsion between carboxyl anions and negatively charged clay surface.  相似文献   
79.
Radiation‐induced simultaneous grafting of styrene onto polytetrafluoroethylene (PTFE) films and the subsequent sulfonation in the chlorosulfonic acid/dichloroethane were investigated. The effects of the main radiation grafting conditions, such as the type of solvents, irradiation dose, dose rate, the styrene concentrations, etc., on the degree of grafting (DOG) were studied. To elucidate the influence of both the grafting and sulfonation conditions on the properties of the PTFE‐g‐polystyrene‐sulfonic acid (PSSA) membranes, the sulfonation conditions, including the sulfonation temperature and the concentration of the ClSO3H with respect to the DOG, were systematically evaluated. The grafted and sulfonated membranes were characterized by FTIR–ATR spectra, ion‐exchange capacity (IEC), water uptake, thickness measurement, etc. The as‐prepared PTFE‐g‐PSSA membranes in this work showed a good combination of a high IEC (0.85–2.75 meq g?1), acceptable water uptake (8.86–56.9 wt %), low thickness, and volume expansion and/or contraction. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1415–1428, 2006  相似文献   
80.
Nanocomposites based on thermoplastic elastomeric polyurethane (TPU) and layered silicate clay were prepared by in situ synthesis. The properties of nanocomposites of TPU with unmodified clay were compared with that of organically modified clay. The nanocomposites of the TPU and organomodified clay showed better dispersion and exhibited superior properties. Exfoliation of the clay layers was observed at low organoclay contents, whereas an intercalated morphology was observed at higher clay contents. As one of major purposes of this study, the effect of the silicate layers in the nanocomposites on the order–disorder transition temperature (TODT) of the TPU was evaluated from the intensity change of the hydrogen‐bonded and free carbonyl stretching peaks and from the peak position change of the N? H bending peak. The presence of the organoclay increased TODT by approximately 10°C, which indicated improved stability in the phase‐separated domain structure. The layered silicate clay caused a tremendous improvement in the stiffness of the TPU; meanwhile, a reduction in the ultimate elongation was observed. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 3048–3055, 2006  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号