首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2258篇
  免费   98篇
  国内免费   5篇
电工技术   24篇
综合类   4篇
化学工业   532篇
金属工艺   47篇
机械仪表   54篇
建筑科学   47篇
矿业工程   7篇
能源动力   60篇
轻工业   120篇
水利工程   10篇
石油天然气   26篇
武器工业   1篇
无线电   277篇
一般工业技术   659篇
冶金工业   88篇
原子能技术   44篇
自动化技术   361篇
  2024年   7篇
  2023年   22篇
  2022年   78篇
  2021年   106篇
  2020年   72篇
  2019年   64篇
  2018年   78篇
  2017年   70篇
  2016年   79篇
  2015年   49篇
  2014年   110篇
  2013年   151篇
  2012年   152篇
  2011年   203篇
  2010年   92篇
  2009年   105篇
  2008年   100篇
  2007年   118篇
  2006年   91篇
  2005年   72篇
  2004年   79篇
  2003年   57篇
  2002年   70篇
  2001年   25篇
  2000年   21篇
  1999年   26篇
  1998年   35篇
  1997年   25篇
  1996年   11篇
  1995年   22篇
  1994年   15篇
  1993年   17篇
  1992年   13篇
  1991年   13篇
  1990年   9篇
  1989年   7篇
  1988年   8篇
  1987年   11篇
  1986年   4篇
  1985年   10篇
  1984年   10篇
  1983年   6篇
  1982年   4篇
  1981年   5篇
  1979年   4篇
  1977年   4篇
  1976年   5篇
  1973年   3篇
  1971年   3篇
  1965年   3篇
排序方式: 共有2361条查询结果,搜索用时 15 毫秒
81.
This article is aimed to discuss the chemical aspects of detonation spraying of powder materials. In this method of coating deposition, ceramic, metallic or composite powders are injected into the barrel of a detonation gun filled with an explosive gaseous mixture. When the latter is ignited, the powders are heated and accelerated toward the substrate. Subjected to high temperatures, the powders are prone to chemical reactions, the reaction products possibly becoming the major phase constituents of the coatings. What types of reactions are possible? Can these reactions be carried out in a controlled manner? We answer these questions considering the interactions of the sprayed powders with the gaseous environment of the barrel as well as those between the phases of a composite feedstock powder. In Computer-Controlled Detonation Spraying (CCDS), the explosive charge and stoichiometry of the fuel-oxygen mixtures are precisely measured and can be flexibly changed. Our studies demonstrate that with the introduction of a highly flexible process of CCDS, detonation spraying has entered a new development stage, at which it can be considered as a powerful method of composition and microstructure tailoring of thermally sprayed coatings. During CCDS of TiO2-containing powders, chemical reduction of titanium dioxide can be carried out to different levels to form either oxygen-deficient TiO2−x or Ti3O5 suboxide. CCDS of Ti3Al can produce titanium oxide coatings when oxidation by the detonation products dominates or titanium nitride-titanium aluminide coatings when oxidation is hindered but the interaction of the powders with nitrogen—a carrier gas component—is favored. During detonation spraying of Ti3SiC2–Cu composites, the Ti3SiC2 phase is preserved only in cold conditions; otherwise, Si de-intercalates from the Ti3SiC2 phase and dissolves in Cu resulting in the formation of the TiCx–Cu(Si) composite coatings.  相似文献   
82.
The effect of three Group IV metals (titanium, zirconium and tin) on the growth, morphology and chemical composition of the freshwater diatom Synedra acus subsp. radians (Kützing) Skabichevsky was studied and compared with germanium. The elements in their highest oxidation states were introduced into the culture medium in the form of hydroxides. Germanium was found to be toxic at ??5?mol. % of the total Ge-Si content in the culture medium. In the presence of other elements, a slight decrease in the cell division rate was observed independent of the element within 1?C15% content interval. The analysis of the obtained biomass and silica valves revealed the presence of all the added elements within the cells. However, only germanium was incorporated into the valves in considerable amounts. S. acus cultivation with the addition of 5% Group IV elements resulted in cells having the following aberrations in the structure of the silica valves: changes in valve shape, thickening of valves, alterations of the areolae rows, irregularity or absence of the areolae and a decrease in the mechanical strength of valves. Moreover, the effect of Group IV elements on silica formation was simulated in vitro using a synthetic polymer bearing polyamine and phosphate groups found in silaffines (proteins from diatom frustules). The studied elements were observed to provoke the formation of unstable silica particles in solution. We propose that the observed effects of germanium, titanium, zirconium and tin on diatom growth and structure are due to uncontrollable silica condensation.  相似文献   
83.
Different approaches to synthesize diaminofuroxan are presented herein. Mathematical and quantum chemical methods were used to study the possible reasons for failures in the syntheses of diaminofuroxan. Additionally, structural isomers of this compound were generated. With the help of the results of quantum chemical calculations at levels of DFT B3LYP 6‐31G(d) and MP2 6‐31G(d), screening of the most stable isomeric forms in the gaseous phase and in water was performed. It was shown that diaminofuroxan is not the thermodynamically most stable isomer among its structural analogues.  相似文献   
84.
Three new regulated deficit irrigation (RDI) treatments were applied to “Arbequina” olive orchards during pit hardening. Oil quality was determined by measuring analytical parameters for olive oil grading, antioxidant activity, total phenol content, fatty acid profile, volatile compounds profile, and sensory analysis. Oils from RDI were classified as “extra virgin olive oil” and their quality was improved due to their higher antioxidant potential (ABTS+ [increased ~75%] and DPPH˙ [increased ~25%] assays) and phenols (increased ~53%) than control. Concentration of total volatile compounds decreased (~27%) but RDI olive oils showed a more balanced profile (alcohols, aldehydes, and esters). Monounsaturated fatty acid content increased (~5%) and atherogenic and thrombogenic indexes decreased (~8.5%) in RDI olive oil. Regarding sensory analysis, RDI provided more balanced oils with higher fruit aroma than control. Other benefits of RDI olive oil, when compared with oil from full irrigated orchards are reduced use of water and improved functional and sensory quality.  相似文献   
85.
Composite materials with a high permittivity (high-k) and low dielectric loss represent an important research direction for the rapid development of modern electronic. This article is about high-k composite with low dielectric loss (dielectric constant is approximately 11, and dielectric loss is only 0.02 at 1 MHz and about 50 wt % of filler) based on a polytetrafluorethylene (PTFE) compounded with priderite (K1.46Ti7.2Fe0.8O16). The dielectric permittivity about ε' ≈ 103 and the dielectric loss of tgδ ≈ 2 have been found for filler content about 50 wt % (30 vol %) and, respectively, ε' ≈ 11 and tgδ ≈ 0.02 for 1 MHz. To produce filler, amorphous potassium polytitanate was synthesized by molten salt method, modified in aqueous solution of iron sulfate, crystallized at 700 °C and further treated in the aqueous dispersion of PTFE. The obtained product was pressured, dried and investigated by X-ray diffraction and scanning electron microscopy. Dielectric properties of the composite with different ceramic filler content (1–90 wt %) were studied using impedance spectroscopy in the frequency range of 10−2 to 106 Hz. The influence of frequency on electric conductivity, permittivity, and dielectric losses was analyzed taking into account the experimental data on porosity, apparent density obtained for the composites. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48762.  相似文献   
86.

Background

Exacerbated oxidative stress is thought to be a mediator of arterial hypertension. It has been postulated that creatine (Cr) could act as an antioxidant agent preventing increased oxidative stress. The aim of this study was to investigate the effects of nine weeks of Cr or placebo supplementation on oxidative stress and cardiovascular parameters in spontaneously hypertensive rats (SHR).

Findings

Lipid hydroperoxidation, one important oxidative stress marker, remained unchanged in the coronary artery (Cr: 12.6 ± 1.5 vs. Pl: 12.2 ± 1.7 nmol·mg-1; p = 0.87), heart (Cr: 11.5 ± 1.8 vs. Pl: 14.6 ± 1.1 nmol·mg-1; p = 0.15), plasma (Cr: 67.7 ± 9.1 vs. Pl: 56.0 ± 3.2 nmol·mg-1; p = 0.19), plantaris (Cr: 10.0 ± 0.8 vs. Pl: 9.0 ± 0.8 nmol·mg-1; p = 0.40), and EDL muscle (Cr: 14.9 ± 1.4 vs. Pl: 17.2 ± 1.5 nmol·mg-1; p = 0.30). Additionally, Cr supplementation affected neither arterial blood pressure nor heart structure in SHR (p > 0.05).

Conclusions

Using a well-known experimental model of systemic arterial hypertension, this study did not confirm the possible therapeutic effects of Cr supplementation on oxidative stress and cardiovascular dysfunction associated with arterial hypertension.  相似文献   
87.
Nanostructured Cu(x)Zn(1-x)Al(2)O(4) with a Cu:Zn ratio of ?:? has been prepared by a microwave-assisted hydrothermal synthesis at 150 °C and used as a precursor for Cu/ZnO/Al(2)O(3)-based catalysts. The spinel nanoparticles exhibit an average size of approximately 5 nm and a high specific surface area (above 250 m(2) g(-1)). Cu nanoparticles of an average size of 3.3 nm can be formed by reduction of the spinel precursor in hydrogen and the accessible metallic Cu(0) surface area of the reduced catalyst was 8 m(2) g(-1). The catalytic performance of the material in CO(2) hydrogenation and methanol steam reforming was compared with conventionally prepared Cu/ZnO/Al(2)O(3) reference catalysts. The observed lower performance of the spinel-based samples is attributed to a lack of synergetic interaction of the Cu nanoparticles with ZnO due to the incorporation of Zn(2+) in the stable spinel lattice. Despite its lower performance, however, the nanostructured nature of the spinel catalyst was stable after thermal treatment up to 500 °C in contrast to other Cu-based catalysts. Furthermore, a large fraction of the re-oxidized copper migrates back into the spinel upon calcination of the reduced catalyst, thereby enabling a regeneration of sintered catalysts after prolonged usage at high temperatures. Similarly prepared samples with Ga instead of Al exhibit a more crystalline catalyst with a spinel particle size around 20 nm. The slightly decreased Cu(0) surface area of 3.2 m(2) g(-1) due to less copper incorporation is not a significant drawback for the methanol steam reforming.  相似文献   
88.
The present paper compares and discusses two selected misfit (layer) compounds exemplarily, namely SnS-SnS2 and LaS-TaS2. We have employed a density-functional theory-based approach to calculate structural, energetic, and electronic properties of these structures. We have put emphasis on the difference between single layers, combined double-layer systems and periodically stacked bulk structures. Especially the varying magnitudes of charge transfer between the sublayers were studied. We demonstrate how the chemical constitution of the sublayers affects the interlayer interactions: these may be a weak non-bonding van-der-Waals dominated interlayer interaction as in SnS-SnS2 and many other layered structures or a strong interaction related to a remarkable charge transfer between the layers as in LaS-TaS2.  相似文献   
89.
The results obtained from a study on the microstructure and the electrical properties of Gd-doped CeO2 thin films were reported. Dense, nanocrystalline films on sapphire substrates are prepared using a polymeric precursor spin coating technique. The electrical conductivity was studied as a function of temperature and oxygen activity and correlated with the grain size. For nanocrystalline Gd-doped CeO2 thin films, the ionic conductivity increased with decreasing activation energy as the grain size decreased. A conductivity model was developed to analyze P O2 behavior of the electrical conductivity. Using the conductivity model, the hopping energy of electron conduction and the enthalpy of oxygen vacancy formation were determined for different microstructures.  相似文献   
90.
The results of Raman-scattering studies of nanocrystalline CeO2 and ZrO2:16% Y (YSZ) thin films are presented. The relationship between the lattice disorder and the form of the Raman spectra is discussed and correlated with the microstructure. It is shown that the Raman line shape results from phonon confinement and spatial correlation effects and yields information about the material nonstoichiometry level.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号