首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1457篇
  免费   65篇
  国内免费   7篇
电工技术   51篇
综合类   1篇
化学工业   308篇
金属工艺   38篇
机械仪表   32篇
建筑科学   21篇
矿业工程   1篇
能源动力   136篇
轻工业   71篇
水利工程   7篇
石油天然气   6篇
无线电   154篇
一般工业技术   304篇
冶金工业   163篇
原子能技术   20篇
自动化技术   216篇
  2024年   4篇
  2023年   21篇
  2022年   30篇
  2021年   62篇
  2020年   50篇
  2019年   60篇
  2018年   63篇
  2017年   48篇
  2016年   60篇
  2015年   43篇
  2014年   51篇
  2013年   115篇
  2012年   73篇
  2011年   92篇
  2010年   71篇
  2009年   74篇
  2008年   49篇
  2007年   56篇
  2006年   43篇
  2005年   28篇
  2004年   28篇
  2003年   37篇
  2002年   19篇
  2001年   23篇
  2000年   28篇
  1999年   18篇
  1998年   37篇
  1997年   34篇
  1996年   26篇
  1995年   12篇
  1994年   19篇
  1993年   14篇
  1992年   15篇
  1991年   12篇
  1990年   7篇
  1989年   9篇
  1988年   9篇
  1987年   6篇
  1986年   4篇
  1985年   10篇
  1984年   9篇
  1983年   5篇
  1981年   5篇
  1980年   6篇
  1979年   8篇
  1978年   6篇
  1977年   8篇
  1976年   6篇
  1975年   3篇
  1974年   3篇
排序方式: 共有1529条查询结果,搜索用时 46 毫秒
201.
202.
PIN-FORMED (PIN) genes play a crucial role in regulating polar auxin distribution in diverse developmental processes, including tropic responses, embryogenesis, tissue differentiation, and organogenesis. However, the role of PIN-mediated auxin transport in various plant species is poorly understood. Currently, no information is available about this gene family in wheat (Triticum aestivum L.). In the present investigation, we identified the PIN gene family in wheat to understand the evolution of PIN-mediated auxin transport and its role in various developmental processes and under different biotic and abiotic stress conditions. In this study, we performed genome-wide analysis of the PIN gene family in common wheat and identified 44 TaPIN genes through a homology search, further characterizing them to understand their structure, function, and distribution across various tissues. Phylogenetic analyses led to the classification of TaPIN genes into seven different groups, providing evidence of an evolutionary relationship with Arabidopsis thaliana and Oryza sativa. A gene exon/intron structure analysis showed a distinct evolutionary path and predicted the possible gene duplication events. Further, the physical and biochemical properties, conserved motifs, chromosomal, subcellular localization, transmembrane domains, and three-dimensional (3D) structure were also examined using various computational approaches. Cis-elements analysis of TaPIN genes showed that TaPIN promoters consist of phytohormone, plant growth and development, and stress-related cis-elements. In addition, expression profile analysis also revealed that the expression patterns of the TaPIN genes were different in different tissues and developmental stages. Several members of the TaPIN family were induced during biotic and abiotic stress. Moreover, the expression patterns of TaPIN genes were verified by qRT-PCR. The qRT-PCR results also show a similar expression with slight variation. Therefore, the outcome of this study provides basic genomic information on the expression of the TaPIN gene family and will pave the way for dissecting the precise role of TaPINs in plant developmental processes and different stress conditions.  相似文献   
203.
Saha  Abhijit  Mondal  Subhas Chandra 《SILICON》2019,11(3):1313-1326
Silicon - Wire electric discharge machining (WEDM) is a nontraditional machining technique to cut hard and conductive material with the assistance of a moving electrode. Nanostructured hardfacing...  相似文献   
204.
The synthesis and characterization of a series of new sulfonated copoly(triazole imide)s (PTPQSH‐XX) are reported in this work. The PTPQSH‐XX with different degree of sulfonation (DS) were prepared by click polymerization of equimolar amounts of a diimide‐based dialkyne monomer, namely bis‐N,N′‐(prop‐2‐ynyl)pyromellitic diimide (TP) and a mixture of two different diazide monomers (one sulfonated, 4,4‐bis[3′‐trifluoromethyl‐4′{4‐azidobenzoxy} benzyl] biphenyl, and another nonsulfonated, 4,4′‐diazido‐2,2′‐stilbene disulfonic acid disodium salt [SAZ]), in different molar ratios. The copolymers showed high inherent viscosity (1.12–1.28 dL/g) in n‐methyl pyrrolidone (NMP) indicating the formation of high molar masses. Freestanding membranes were prepared from these copolymers by solution casting method. DS of the copolymers was determined from 1H NMR signal intensities, and the values were in good agreement with the quantity of SAZ monomer used in polymer feed, indicating the successful incorporation of the sulfonated monomer. The copolymers exhibited high thermal and mechanical stabilities. The PTPQSH‐80 membrane showed proton conductivity as high as 178 mS/cm at 90°C with good oxidative and hydrolytic stability. Cross‐sectional transmission electron microscope micrographs of the membranes indicated phase segregated morphology along with interconnected hydrophilic domains with dimension in the range 15–150 nm. POLYM. ENG. SCI., 59:2279–2289, 2019. © 2019 Society of Plastics Engineers  相似文献   
205.
This study investigated the role of flaxseed meal (FSM), a rich terrestrial source of ω-3 fatty acids, in the alteration of the fatty acid profile and metabolism, health indices, physicochemical properties, and sensory quality of broiler chicken meat. The broiler chickens were fed 100 g FSM kg−1 diet for different time periods (1, 2, 3, 4, and 5 weeks). The results revealed that 100 g FSM feeding in broiler chickens for at least 3 weeks increased (P < 0.01) the EPA, DHA, MUFA, PUFA, ω-3 PUFA, and ω-6 PUFA of broiler chicken meat with the corresponding decrease in palmitic acid, stearic acid, and SFA content. 100 g FSM feeding up to 3 weeks has increased the Δ9-desaturases (P < 0.05), thioesterase index (P < 0.01), and Δ5-desaturase + Δ6-desaturase activity (P < 0.01) along with an improvement in health indices (P < 0.01) of chicken meat. Similarly, a reduction in meat cholesterol and fat content of thigh meat (P < 0.01) was observed by feeding 100 g FSM for at least 3 weeks with no effect on the pH, color scores, and sensory evaluation of broiler chicken meat. The water-holding capacity (WHC) and extract release volume (ERV) decreased, whereas, drip loss of meat increased (P < 0.01) due to the feeding of 100 g FSM beyond 3 weeks. Thus, this study concluded that 100 g FSM feeding for 3 weeks in broiler chickens significantly improves the fatty acid profile, lipid metabolism, and health indices of meat, without compromising the physicochemical properties of broiler chicken meat.  相似文献   
206.
Visualization of polymer molecules by molecular dynamics simulation remains a challenging area in molecular modeling, as it involves a number of factors like type of force field, simulation time, simulation steps, and so forth. In our present study, we have used the condensed-phase optimized molecular potentials for atomistic simulation studies (COMPASS) force field, which is specific for polymers and organic molecules, in order to visualize the macromolecular chains of various flexible amorphous polymers: natural rubber, polybutadiene rubber, styrene–butadiene rubber, nitrile rubber, polychloroprene rubber, and fluoroelastomer. The study covered a wide range from nonpolar rubbers to polar rubbers, and the COMPASS force field was promising to understand the local structure and the packing of the chains inside the simulation box. The distance between different adjacent pairs of carbon atoms within the polymer chains was discussed in detail from intramolecular radial distribution function and represented pictorially in the polymer chains. Various bond angles were also examined for further details. In addition, interchain contacts, glass-transition temperature, and solubility parameter were predicted and compared with the experimental values. The diffusive characteristic of the chains was assessed by mean square displacement which in turn described the polymer chain mobility. In essence, the present study is expected to aid in the vivid conceptualization of molecular orientation of various polymers and would help in predicting various physical properties. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47457  相似文献   
207.
Hydroxytyrosol and hydroxytyrosyl acetate are two well-known phenolic compounds with antioxidant properties that are present in virgin olive oil. Since the in vivo biological activity of polyphenols is dependent on their intestinal absorption and metabolism, the absorption of hydroxytyrosol and hydroxytyrosyl acetate and the extent to which they are conjugated and metabolised during transfer across intestinal Caco-2/TC7 cell monolayers, was investigated. LC-DAD and LC-MS were used for the quantification and identification of metabolites. Further evidence was obtained by observing metabolite susceptibility to β-glucuronidase treatment and by comparison of products of in vitro conjugation reactions of authentic phenolics with those produced by the CaCo-2 cells. Homovanillyl alcohol was the only conjugate detected as a result of hydroxytyrosol metabolism, and accounted for 20% of the total metabolites detected in the basolateral compartment after 2 h of incubation. Hydroxytyrosyl acetate was largely converted into free hydroxytyrosol (38.4%) and subsequently metabolised into homovanillyl alcohol (6.7%). In addition, hydroxytyrosyl acetate glucuronide (17.4%) together with non-metabolised hydroxytyrosyl acetate (37.5%) were also detected. Both hydroxytyrosyl acetate and hydroxytyrosol were transferred across human Caco-2/TC7 cell monolayers, but the acetylated compound exhibited an apparent permeability (PappAP→BL/Papp BL→AP) 2.1-fold higher than free hydroxytyrosol. For both compounds, all conjugates were preferentially transported to the basolateral side. These results show that the acetylation of hydroxytyrosol significantly increases its transport across the small intestinal epithelial cell barrier, and supports further research into hydroxytyrosyl acetate as a hydroxytyrosol prodrug offering enhanced bioavailability.  相似文献   
208.
High-performance Kevlar fiber had extensively been explored to upgraded mechanical properties of the advanced composites. Therefore, this study aimed a challenging work to grow carbon nanofibers onto the Kevlar fiber to improve its fiber-matrix interaction properties. It was successfully done through inexpensive flame deposition as well as modification of matrix with hybrid resin using polyurethane-epoxy mixture. A hand-layup method had been adopted to manufacture the composite laminates. The chemical and surface structures of the prepared laminae were examined by scanning electron microscopy, Raman spectroscopy, X-ray diffraction, and the composite's properties were evaluated tensile test, compact tension (CT) fracture test, fractography, and differential scanning calorimetry. The surface modified Kevlar laminae with CNF were used as reinforcing layer in the epoxy and PU/epoxy hybrid resin matrices. CNF-coated heated Kevlar reinforced laminated PU/epoxy hybrid composites (CNF-Kev/PU-Epoxy) showed highest elongation 47% and fracture toughness (11.7 MPa√m) along with good UTS 139 MPa. Therefore, these hybrid nanocomposites developed by simple inexpensive method would be the potential candidates for several advanced applications particularly in defense, automobile, aerospace, and spacecraft applications. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48802.  相似文献   
209.
This work focuses mainly about swelling and rheological properties of calcium phosphate filled bacterial cellulose (BC)-based hydrogel scaffolds. Calcium phosphate is incorporated in the form of hydroxyapatite (HA) and β-tricalcium phosphate (β-TCP) in different ratios, that is, 00:00, 10:90, 20:80, 40:60, 50:50, and 60:40. These scaffolds are also comprised with polyvinylpyrrolidone (PVP), poly(ethylene glycol), agar, and glycerin; designated as “BC-PVP” and “BC-PVP-β-TCP/HA.” All the hydrogel scaffolds are showing the notable viscoelastic property at 28 and 37 °C temperatures. The degree of swelling is found significant in BC-PVP-β-TCP/HA_50:50 scaffold and it is notably elastic at 37 °C after 5 min of swelling. However, after 60 min of swelling and at equilibrium swelling state, the elastic property of BC-PVP-β-TCP/HA_20:80 is revealed the highest. Considering the degree of swelling and rheological properties, the BC-PVP-β-TCP/HA_50:50 and BC-PVP-β-TCP/HA_20:80 hydrogel scaffolds found suitable for their application in bone tissue engineering or bone tissue regeneration. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48522.  相似文献   
210.
Nowadays, the synthesis of graphene/ graphene oxide from graphite precursor using oxidizing agents is the most common procedure, but the direct synthesis of graphene or graphene oxide from a non-graphitic carbonaceous material without using inert atmosphere is really a great challenge. Besides, the chemistry behind the development of graphitic structure from a non-graphitic material during the thermal heating is still not clearly understood. In this research work, three agrowaste materials viz. rice husk, sugarcane bagasse and newspaper were selected and subjected to pyrolysis in presence of trace amount of air. The continued heating at the optimum temperature has resulted in aromatization and condensation along with the oxidation within the cellulosic structure of the agrowaste, which finally resulted in the formation of graphene oxide nanoflakes directly. The mechanism of formation of graphene oxide from these agrowaste materials was studied, which suggested that any carbonaceous waste materials can be converted to graphene oxide by optimizing the thermal heating conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号