首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2500篇
  免费   167篇
  国内免费   1篇
电工技术   17篇
综合类   1篇
化学工业   658篇
金属工艺   91篇
机械仪表   91篇
建筑科学   100篇
矿业工程   7篇
能源动力   196篇
轻工业   374篇
水利工程   12篇
石油天然气   19篇
无线电   134篇
一般工业技术   470篇
冶金工业   76篇
原子能技术   12篇
自动化技术   410篇
  2024年   9篇
  2023年   28篇
  2022年   58篇
  2021年   114篇
  2020年   81篇
  2019年   69篇
  2018年   135篇
  2017年   120篇
  2016年   135篇
  2015年   100篇
  2014年   137篇
  2013年   351篇
  2012年   133篇
  2011年   169篇
  2010年   172篇
  2009年   139篇
  2008年   124篇
  2007年   109篇
  2006年   66篇
  2005年   46篇
  2004年   40篇
  2003年   23篇
  2002年   33篇
  2001年   16篇
  2000年   25篇
  1999年   19篇
  1998年   26篇
  1997年   11篇
  1996年   19篇
  1995年   11篇
  1994年   8篇
  1993年   8篇
  1992年   12篇
  1991年   5篇
  1990年   9篇
  1989年   4篇
  1988年   7篇
  1987年   9篇
  1986年   7篇
  1985年   12篇
  1984年   11篇
  1983年   5篇
  1982年   7篇
  1981年   14篇
  1980年   6篇
  1978年   3篇
  1977年   3篇
  1976年   6篇
  1974年   4篇
  1973年   3篇
排序方式: 共有2668条查询结果,搜索用时 15 毫秒
21.
Based on the correlations between laboratory units and commercial plants, a procedure has been developed to guide commercial FCC (Fluid Catalytic Cracking) catalysts selection. Examining the operability of catalyst mixtures during catalyst transition period is emphasized. The testing procedure is simple and reliable. A commercially available catalyst and the catalyst currently in use have been compared to demonstrate the applicability of this procedure. The commercial testing has confirmed the reliability of laboratory results. The use of the catalyst evaluated led to a 30% saving in catalyst cost.  相似文献   
22.
MFI type inorganic carrier was used in two different cationic forms, hydrogen and calcium respectively. MFI-supported molybdenum and rhenium catalysts were prepared. The activities of the catalysts were compared for the aromatization reaction of methane. Higher activity values were attained with the catalysts supported on HZSM-5. Aromatics were also observed with the catalysts supported on CaZSM-5, despite their deficiency in acid sites. Highly dispersed rhenium is expected to be formed with the use of the inorganic carrier in calcium form. On the other hand, lower reaction rates were observed with rhenium supported on CaZSM-5, in spite of the improved dispersion of the active rhenium species on this catalyst. This was interpreted in terms of the critical role of the acid sites in the conversion of methane to aromatics, compared to the improved dispersion of the active metal.  相似文献   
23.
We initiate a deep study of Riesz MV-algebras which are MV-algebras endowed with a scalar multiplication with scalars from \([0,1]\) . Extending Mundici’s equivalence between MV-algebras and \(\ell \) -groups, we prove that Riesz MV-algebras are categorically equivalent to unit intervals in Riesz spaces with strong unit. Moreover, the subclass of norm-complete Riesz MV-algebras is equivalent to the class of commutative unital C \(^*\) -algebras. The propositional calculus \({\mathbb R}{\mathcal L}\) that has Riesz MV-algebras as models is a conservative extension of ?ukasiewicz \(\infty \) -valued propositional calculus and is complete with respect to evaluations in the standard model \([0,1]\) . We prove a normal form theorem for this logic, extending McNaughton theorem for ? ukasiewicz logic. We define the notions of quasi-linear combination and quasi-linear span for formulas in \({\mathbb R}{\mathcal L},\) and relate them with the analogue of de Finetti’s coherence criterion for \({\mathbb R}{\mathcal L}\) .  相似文献   
24.
A theoretical DFT study was employed to confirm the Kolbe-Schmitt reaction mechanism and investigate solvent effects on this reaction. The use of a solvent in the Kolbe-Schmitt reaction is desirable to facilitate a homogeneous reaction mixture and potentially improve the reaction rate. The candidate solvents were designed using computer aided molecular design (CAMD) and tested using DFT solvation calculations. The results from the quantum mechanical calculations were then used to determine the rate constants for each elementary step, the overall reaction yields and the corresponding residence time. The methodology was tested on the reaction without solvent, with solvents reported in the literature, and with the designed solvents. The study revealed that in the presence of solvents with high dielectric constant the reaction becomes reversible, leading to low product yields.  相似文献   
25.
The influence of the apatite on the efficiency of neutralization and on heavy metal removal of acid mine waste water has been studied. The analysis of the treated waste water samples with apatite has shown an advanced purification, the concentration of the heavy metals after the treatment of the waste water with apatite being 25 to 1000 times less than the Maximum Concentration Limits admitted by European Norms (NTPA 001/2005). In order to establish the macro‐kinetic mechanism in the neutralization process, the activation energy, Ea, and the kinetic parameters, rate coefficient of reaction, kr, and kt were determined from the experimental results obtained in “ceramic ball‐mill” reactor. The obtained values of the activation energy Ea >> 42 kJ mol?1 (e.g. Ea = 115.50 ± 7.50 kJ mol?1 for a conversion of sulphuric acid ηH2SO4 = 0.05, Ea = 60.90 ± 9.50 kJ mol?1 for η H2SO4 = 0.10 and Ea = 55.75 ± 10.45 kJ mol‐1 for η H2SO4 = 0.15) suggest that up to a conversion of H2SO4 equal 0.15 the global process is controlled by the transformation process, adsorption followed by reaction, which means surface‐controlled reactions. At a conversion of sulphuric acid η H2SO4 > 0.15, the obtained values of activation energy Ea < 42 kJ mol‐1 (e.g. Ea = 37.55 ± 4.05 kJ mol‐1 for η H2SO4 = 0.2, Ea = 37.54 ± 2.54 kJ mol‐1 for η H2SO4 = 0.3 and Ea = 37.44 ± 2.90 kJ mol‐1 for η H2SO4 = 0.4) indicate diffusion‐controlled processes. This means a combined process model, which involves the transfer in the liquid phase followed by the chemical reaction at the surface of the solid. Kinetic parameters as rate coefficient of reaction, kr with values ranging from (5.02 ± 1.62) 10‐4 to (8.00 ± 1.55) 10‐4 (s‐1) and transfer coefficient, kt, ranging from (8.40 ± 0.50) 10‐5 to (10.42 ± 0.65) 10‐5 (m s‐1) were determined.  相似文献   
26.
Modification of chitosan by grafting of vinyl butyrate was carried out in homogeneous phase using potassium persulfate as redox initator and 1.5% acetic acid as solvent. The percent grafting and grafting efficiency were analysed and the high grafting efficiency up to 94% was observed. The effects of reaction variables such as monomer concentration, initiator concentration, temperature and reaction time were investigated. It was observed that the solubility of chitosan was markedly reduced after grafting with vinyl butyrate. The grafted product is insoluble in common organic solvents as well in dilute organic and inorganic acids. Characterization of the graft copolymers were carried out by using Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC) and Scanning Electron Microscopy (SEM) technics. Characteristic signal of carbonyl group was observed at 1,731 cm−1 which belongs to the poly vinyl butyrate segments in the graft copolymer. The melting transition of the chitosan main chain in the copolymer shifted to 124°C from its original value 101°C. In addition to these, we have also studied topology of the graft copolymer and the SEM micrograph showed continuous homogenous matrix which means there is no phase separation.  相似文献   
27.
Poly(ethylene oxide)-b-poly(butadiene-co-acrylonitrile)-b-poly(ethylene oxide) (PEO-b-PBN-b–PEO) triblock copolymers with three different compositions were synthesized from poly(ethylene glycol) methyl ethers and carboxylic acid-terminated poly(butadiene-co-acrylonitrile) (CTBN) by ester coupling reaction at room temperature. The PEO-b-PBN-b-PEO was incorporated into anhydride cured epoxy thermosets to improve the fracture toughness by the formation of either nano-sized spherical micelles or micron-sized vesicles. The polymer chemical structure was confirmed by Fourier transform infrared spectroscopy, nuclear magnetic resonance, and gel permeation chromatography. The morphology of PEO-b-PBN-b–PEO within the epoxy thermosets was investigated using a transmission electron microscope, an atomic force microscope, and a scanning electron microscope. Also, we conducted impact testing and plane-strain fracture toughness testing to evaluate the fracture toughness in terms of the impact strength and the critical stress intensity factors (KIC) for the modified epoxy thermosets. The results revealed that all the PEO-b-PBN-b-PEO triblock copolymers are more effective in the toughening of epoxy thermoset compare to CTBN. We found that the 5 wt% PEO-b-PBN-b-PEO modified epoxy thermoset containing micron-sized vesicles exhibited the highest KIC, which was 3.23 times as high as the KIC of pristine epoxy thermoset. Besides, the glass transition temperature remained and the tensile modulus did not reduce remarkably when the amount of PEO-b-PBN-b-PEO added into epoxy was 5 wt%.  相似文献   
28.
Ultra-high molecular weight polyethylene (UHMWPE) is extensively used in frictional applications due to its advanced wear resistance. This advanced polymer is reinforced with hard particulate fillers for further developments against wear conditions. Since elevated temperatures prevail in the service conditions, wear behavior of UHMWPE composites is an important issue for the engineering applications. In the present work, UHMWPE-based composites including silicon carbide (SiC) fillers were fabricated in a compression molding chamber. In the specimen preparation stage, molding pressure, filler amount, and filler particle size were varied to investigate the influence of these variables. Upon deciding the optimum parameters from the wear tests conducted at room temperature, the wear experiments were repeated for the optimum specimen at elevated temperatures, such as 40 and 60°C. According to the results, the wear behavior of the SiC/UHMWPE composites is heavily changed by the effect of elevated temperature. Adhesive effect is pronounced at elevated temperatures while the wear characteristics possess the abrasive effect in the sliding path. In addition, the composites exhibit an accelerated material loss as temperature increases during the frictional system.  相似文献   
29.
Investigations on the production and development of nanoparticle-reinforced polymer materials have been attracted attention by researchers. Various nanoparticles have been used to improve the mechanical, chemical, thermal, and physical properties of polymer matrix composites. Boron compounds come to the fore to improve the mechanical and thermal properties of polymers. In this study, mechanical, thermal, and structural properties of structural adhesive have been examined by adding nano hexagonal boron nitride (h-BN) to epoxy matrix at different percentages (0.5, 1, 2, 3, 4, and 5%). For this purpose, nano h-BN particles were functionalized with 3-aminopropyltriethoxysilane (APTES) to disperse the h-BN nanoparticles homogeneously in epoxy matrix and to form a strong bond at the matrix interface. Two-component structural epoxy adhesive was modified by using functionalized h-BN nanoparticles. The structural and thermal properties of the modified adhesives were investigated by scanning electron microscopy and energy dispersion X-ray spectroscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis techniques. Tensile test and dynamic mechanical analysis were performed to determine the mechanical properties of the adhesives. When the results obtained from analysis were examined, it was seen that the nano h-BN particles functionalized with APTES were homogeneously dispersed in the epoxy matrix and formed a strong bond. In addition that, it was concluded from the experimental results that the thermal and mechanical properties of adhesives were improved by adding functionalized nano h-BN particles into epoxy at different ratios.  相似文献   
30.
In the presented study, the structural, thermal, and mechanical properties of the nanocomposites were investigated by doping silanized hexagonal boron carbide (h-B4C) nanoparticles in varying proportions (0.5%, 1%, 2%, 3%, 4%, and 5%) into the epoxy resin by weight. For this purpose, the surfaces of h-B4C nanoparticles were silanized by using 3-(glycidyloxypropyl) trimethoxysilane (GPS) to improve adhesion between h-B4C nanoparticles and epoxy matrix. Then, the silanized nanoparticles were added to the resin by ultrasonication and mechanical stirring techniques to produce nanocomposites. The bond structure differences of silanized B4C nanoparticles (s-B4C) and nanoparticle doped composites were investigated by using Fourier transform infrared spectroscopy. Scanning electron microscopy and energy dispersion X-ray spectroscopy (SEM-EDS) technique was used to examine the distribution of nanoparticles in the modified nanocomposites. Differential scanning calorimetry and thermogravimetric analysis techniques were used to determine the thermal properties of the neat and s-B4C doped nanocomposites. The tensile test and dynamic mechanical analysis were performed to determine the mechanical properties. When the experimental results were examined, changes in the bonding structure of the s-B4C nanoparticles doped nanocomposites and significant improvements in the mechanical and thermal properties were observed. The optimum doping ratio was determined as 2% by weight. At this doping ratio, the Tg, tensile strength and storage modulus increased approximately 18%, 35%, and 44% compared to the neat composite, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号