首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   177篇
  免费   2篇
电工技术   2篇
化学工业   22篇
金属工艺   2篇
机械仪表   2篇
建筑科学   9篇
能源动力   44篇
轻工业   8篇
水利工程   12篇
无线电   14篇
一般工业技术   15篇
冶金工业   13篇
自动化技术   36篇
  2023年   2篇
  2022年   2篇
  2021年   4篇
  2020年   1篇
  2019年   5篇
  2018年   7篇
  2017年   5篇
  2016年   4篇
  2015年   5篇
  2014年   4篇
  2013年   16篇
  2012年   21篇
  2011年   10篇
  2010年   17篇
  2009年   9篇
  2008年   14篇
  2007年   6篇
  2006年   8篇
  2005年   11篇
  2004年   6篇
  2003年   4篇
  2002年   2篇
  2001年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   4篇
  1991年   3篇
  1990年   1篇
  1988年   1篇
  1982年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有179条查询结果,搜索用时 15 毫秒
21.
This paper deals with a class of rate-independent metal plasticity models which exhibit non-linear isotropic hardening, non-linear kinematic hardening (Chaboche-Marquis model) and ductile damage (Lemaitre-Chaboche model). The backward Euler scheme is used to integrate the rate constitutive relations. The non-linear equations obtained are solved by the Newton method. The consistent tangent operator is obtained by exact linearization of the algorithm. Despite the complexity of the constitutive equations, closed-form expressions are derived, without any approximations. Analytical, numerical and experimental results are presented and discussed.  相似文献   
22.
Gender recognition has been playing a very important role in various applications such as human–computer interaction, surveillance, and security. Nonlinear support vector machines (SVMs) were investigated for the identification of gender using the Face Recognition Technology (FERET) image face database. It was shown that SVM classifiers outperform the traditional pattern classifiers (linear, quadratic, Fisher linear discriminant, and nearest neighbour). In this context, this paper aims to improve the SVM classification accuracy in the gender classification system and propose new models for a better performance. We have evaluated different SVM learning algorithms; the SVM‐radial basis function with a 5% outlier fraction outperformed other SVM classifiers. We have examined the effectiveness of different feature selection methods. AdaBoost performs better than the other feature selection methods in selecting the most discriminating features. We have proposed two classification methods that focus on training subsets of images among the training images. Method 1 combines the outcome of different classifiers based on different image subsets, whereas method 2 is based on clustering the training data and building a classifier for each cluster. Experimental results showed that both methods have increased the classification accuracy.  相似文献   
23.
In radiography imaging, contrast, sharpness and noise there are three fundamental factors that determine the image quality. Removing noise while preserving and sharpening image contours is a complicated task particularly for images with low contrast like radiography. This paper proposes a new anisotropic diffusion method for radiography image enhancement. The proposed method is based on the integration of geometric parameters derived from the local pixel intensity distribution in a nonlinear diffusion formulation that can concurrently perform the smoothing and the sharpening operations. The main novelty of the proposed anisotropic diffusion model is the ability to combine in one process noise reduction, edge preserving and sharpening. Experimental results using both synthetic and real welding radiography images prove the efficiency of the proposed method in comparison with other anisotropic diffusion methods.  相似文献   
24.
Published studies concerning transport phenomena in micro-channel heat sinks can be divided into those concerning saturated boiling versus those focused on subcooled boiling, with the vast majority related to the former. What has been lacking is a single generalized method to tackle both boiling regimes. The primary objective of the present paper is to construct a consolidated method to predicting transport behavior of micro-channel heat sinks incurring all possible heat transfer regimes. First, a new correlation is developed for subcooled flow boiling pressure drop that accounts for inlet subcooling, micro-channel aspect ratio, and length-to-diameter ratio. This correlation shows excellent predictive capability against subcooled HFE 7100 pressure drop data corresponding to four different micro-channel geometries. Next, a consolidated method is developed for pressure drop that is capable of tackling inlet single-phase liquid, subcooled boiling, saturated boiling, and single-phase vapor regimes as well as inlet contraction and outlet expansion. A similar consolidated method is developed to predict the heat transfer coefficient that is capable of tackling all possible combinations of heat transfer regimes. The new consolidated method is shown to be highly effective at reproducing both data and trends for HFE 7100, water and R134a.  相似文献   
25.
This second part of a two-part study presents a transient, three-dimensional numerical model for a high-pressure metal hydride (HPMH) hydrogen storage system that is cooled by a coiled-tube heat exchanger. The model uses the same geometry examined in the first part of the study and its predictions are compared to experimental results also discussed in the first part. The model involves solving coupled heat diffusion and hydriding reaction equations for Ti1.1CrMn. These equations are solved to determine the spatial distribution of hydride temperature as a function of time over the entire duration of the hydriding reaction, which is shown to agree favorably with the experimental data. The model also serves as an effective means for tracking the detailed temporal variations of the heat exchanger’s key performance parameters for different hydride locations relative to the coolant tube. These variations can aid in determining optimum placement of the coolant tube relative the hydride powder. Like the experimental study, the model proves that coolant temperature has the greatest influence on the time needed to complete the hydriding reaction.  相似文献   
26.
27.
The effects of common data smoothing techniques, on the estimating of the kinetic and thermodynamic parameters of the crystal growth process, were discussed in the light of birth and spread model. Adoption of the moving average, and filtration caused a noticeable misunderstanding of the real ruling growth mechanism, especially, during the early period of the crystal growth.In this work, a MATLAB routine was developed with standard, and reliable method to treat the prolonged concentration-time data sets, as obtained from continuous recording of refractometric °Brix readings of pure sucrose solutions in laboratory batch crystallization process. The method consists of finding the median of the residence time for every °Brix concentration, with and without interference of previous and post readings. In addition to 30% reduction in the evaluated interfacial free energies, up to 5-folds of increase in the estimates of the overall kinetic coefficients were reported using the common smoothing techniques instead of the proposed routine.  相似文献   
28.
The aim of this work is to investigate by modelling the possibility of reducing the operational energy of a typical house without negatively affecting its embodied energy. This is done through consideration of different building materials coupled with the use of an earth to air heat exchanger (EAHE) for fresh air supply and cooling. For known indoor and outdoor conditions and for given building materials (thermal capacity and conductance), a ventilation controller determines the amount of flow rate needed to temperate the indoor air temperature to achieve thermal comfort. Different wall configurations are assumed for each of the living zone and the bedroom zone of the apartment. It is found that the use of an optimal wall configuration in each zone coupled with the EAHE results in 76.7% energy savings compared with the reference case with conventional cooling.  相似文献   
29.
This paper explores the two-phase cooling performance of a hybrid cooling scheme in which a linear array of micro-jets deposits liquid gradually along each channel of a micro-channel heat sink. The study also examines the benefits of utilizing differently sized jets along the micro-channel. Three micro-jet patterns, decreasing-jet-size (relative to center of channel), equal-jet-size and increasing-jet-size, were tested using HFE 7100 as working fluid. It is shown feeding subcooled coolant into the micro-channel in a gradual manner greatly reduces vapor growth along the micro-channel. Void fraction increased between jets but decreased sharply beneath each jet, creating a repeated pattern of growth followed by coalesce, and netting only a mild overall increase in void fraction along the flow direction with predominantly liquid flow at outlet. Unlike most flow boiling situations, where pressure drop increases with increasing heat flux, pressure drop in the hybrid configurations actually decreased and reached a minimum just before CHF. This behavior is closely related to the low void fraction and predominantly liquid flow. Pressure drop in the two-phase region is highest for the equal-jet-size pattern, followed by the decreasing-jet-size and increasing-jet-size patterns, respectively. Low void fraction increased the effectiveness of the hybrid cooling schemes in utilizing bulk liquid subcooling and therefore helped achieve high CHF values. The decreasing-jet-size pattern, which had the highest outlet subcooling, achieved the highest CHF. A single correlation was constructed for the three jet patterns, which relates the two-phase heat transfer coefficient to heat flux and wall superheat.  相似文献   
30.
A capillary pumped loop (CPL) is a closed two-phase loop in which capillary forces developed in a wicked evaporator passively pump the working fluid over long distances to dissipate heat from electronic and power sources. Because it has no moving parts and requires minimal power to sustain operation, the CPL is considered an enabling technology for thermal management of spacecraft. While the steady-state operation of a CPL is fairly well understood, its thermal response during startup remains very illusive. During the startup, initial vapor bubble growth in the evaporator is responsible for liquid acceleration that results in a differential pressure spike. A large pressure spike can deprime the evaporator by forcing vapor into the evaporator’s liquid-saturated wick, which is the only failure mode of a CPL other than fluid loss or physical damage to the loop. In this study, a numerical transient 3D model is constructed to predict the initial bubble growth. This model is used to examine the influence of initial system superheat, evaporator groove shape and size, and wick material. A simplified model is also presented which facilitates the assessment of parametric influences by analytic means. It is shown how these design parameters may be optimized to greatly reduce the bubble growth rate and therefore help prevent a deprime.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号