Regional geochemical maps have shown extensive anomalies of arsenic, copper and other heavy metals in those parts of South-West England associated with mineralised zones around the granite intrusion. Studies in the vicinity of the River Tamar and of the metamorphic aureole around Dartmoor have confirmed significantly higher concentrations of arsenic and heavy metals in soils contaminated by mining, smelting and mineralisation compared with those from nearby control areas. Arsenic and copper show the greatest degree of enhancement ranging up to 900 ppm As and 2000 ppm Cu in both alluvial and upland topsoils within the Tamar area. Preliminary analyses indicate that the trace metal content of pasture herbage-reflects in part the degree of soil contamination. Maximum concentrations of 35 ppm As and 22 ppm Cu in autumn sampled herbage were found at contaminated sites compared with mean values of less than 0.5 ppm As and 8 ppm Cu in control areas. Geochemical reconnaissance surveys based on stream sediment sampling provide a useful indication of areas wherein widescale soil contamination may occur. 相似文献
Segregated areas may occur around an attractive park or a waste incinerator, but the magnitude and group membership of the people in closest proximity will likely be difierent. We therefore introduce a local segregation measure that can be applied to any location within a metropolitan area, and that can identify the group that is relatively more concentrated around that reference location. We further introduce an inference approach to identify the statistical significance of a particular segregation value. In an exploratory setting the index can be used to generate a map of hot spots, and seed the question: “why is this group significantly concentrated around that location?” 相似文献
Despite significant on-going investment, water companies continue to receive an unacceptable number of discolouration related customer contacts. In this paper, data from intensive distribution system turbidity monitoring and cluster analysis of discolouration customer contacts indicate that a significant proportion of these contacts are due to material mobilising from the trunk main system, and operational flow increases are shown to have a higher discolouration risk than burst incidents. A trunk main discolouration incident highlighting this risk is discussed, demonstrating the need for pro-active trunk main risk assessments. To identify the source of the material event flow rates were modelled using the PODDS (prediction of discolouration in distribution systems) discolouration model. Best practice pro-active management is demonstrated in a case study where the PODDS model is used to implement managed incremental flow changes on a main with known discolouration risk with no discolouration impact to customers and significant cost savings. 相似文献
Current magnetic resonance imaging (MRI) axon diameter measurements rely on the pulsed gradient spin-echo sequence, which is unable to provide diffusion times short enough to measure small axon diameters. This study combines the AxCaliber axon diameter fitting method with data generated from Monte Carlo simulations of oscillating gradient spin-echo sequences (OGSE) to infer micron-sized axon diameters, in order to determine the feasibility of using MRI to infer smaller axon diameters in brain tissue.
Materials and methods
Monte Carlo computer simulation data were synthesized from tissue geometries of cylinders of different diameters using a range of gradient frequencies in the cosine OGSE sequence . Data were fitted to the AxCaliber method modified to allow the new pulse sequence. Intra- and extra-axonal water were studied separately and together.
Results
The simulations revealed the extra-axonal model to be problematic. Rather than change the model, we found that restricting the range of gradient frequencies such that the measured apparent diffusion coefficient was constant over that range resulted in more accurate fitted diameters. Thus a careful selection of frequency ranges is needed for the AxCaliber method to correctly model extra-axonal water, or adaptations to the method are needed. This restriction helped reduce the necessary gradient strengths for measurements that could be performed with parameters feasible for a Bruker BG6 gradient set. For these experiments, the simulations inferred diameters as small as 0.5 μm on square-packed and randomly packed cylinders. The accuracy of the inferred diameters was found to be dependent on the signal-to-noise ratio (SNR), with smaller diameters more affected by noise, although all diameter distributions were distinguishable from one another for all SNRs tested.
Conclusion
The results of this study indicate the feasibility of using MRI with OGSE on preclinical scanners to infer small axon diameters.
This paper presents a contingency screening method and a framework for its on-line implementation. The proposed method carries out contingency screening and on-line stability assessment with respect to first-swing transient stability. For that purpose, it utilizes the single machine equivalent method and aims at improving the prior developed contingency screening approaches. In order to determine vulnerability of the system with respect to a particular contingency, only one time-domain simulation needs to be performed. An early stop criteria is proposed so that in a majority of the cases the simulation can be terminated after a few hundred milliseconds of simulated system response. The method’s outcome is an assessment of the system’s stability and a classification of each considered contingency. The contingencies are categorized by exploiting parameters of an equivalent one machine infinite bus system. A novel island detection approach, appropriate for an on-line application since it utilizes efficient algorithms from graph theory and enables stability assessment of individual islands, is also introduced. The New England and New York system as well as the large-scale model of the Continental-European interconnected system are used to test the proposed method with respect to assessment accuracy and computation time. 相似文献
All-solid-state batteries based on fast Li+ conducting solid electrolytes such as Li7La3Zr2O12 (LLZO) give perspective on safe, non-inflammable, and temperature tolerant energy storage. Despite the promise, ceramic processing of whole battery assemblies reaching close to theoretical capacities and finding optimal strategies to process large-scale and low cost battery cells remains a challenge. Here, we tackle these issues and report on a solid-state battery cell composed of Li4Ti5O12 / c-Li6.25Al0.25La3Zr2O12 / metallic Li delivering capacities around 70–75 Ah/kg with reversible cycling at a rate of 8 A/kg (for 2.5–1.0 V, 95 °C). A key aspect towards the increase in capacity and Li+ transfer at the solid electrolyte-electrode interface is found to be the intimate embedding of grains and their connectivity, which can be implemented by the isostatic pressing of cells during their preparation. We suggest that simple adaption of ceramic processing, such as the applied pressure during processing, strongly alters the electrochemical performance by assuring good grain contacts at the electrolyte-electrode interface. Among the garnet-type all-solid-state ceramic battery assemblies in the field, considerably improved capacities and cycling properties are demonstrated for Li4Ti5O12 / c-Li6.25Al0.25La3Zr2O12 / metallic Li pressed cells, giving new perspectives on cheap ceramic processing and up-scalable garnet-based all-solid-state batteries. 相似文献
In contrast to traditional projects, which are assumed to be fully specified and then executed with little learning anticipated, complex projects cannot be fully specified at the outset and require continuous learning over their life cycles. Nevertheless, the key role of knowledge formation and learning in managing complex projects is under-developed for expanding project capability boundaries to include knowledge uncertainty and indeterminacy. 相似文献
Metallurgical and Materials Transactions A - Equal channel angular extrusion (ECAE) of 49Fe-49Co-2V, also known as Hiperco® 50A or Permendur-2V, greatly improves the strength and ductility of... 相似文献
The present investigations focused on the thermal oxidation of two variants of MAR-M246 alloy having the same contents of Ta and Nb in at. pct, considering the effects of total replacement of Ta by Nb. The alloys were produced by investment casting using high purity elements in induction furnace under vacuum atmosphere. The alloys were oxidized pseudo-isothermally at 800 °C, 900 °C and 1000 °C up to 1000 hours under lab air. Protective oxidation products growing on the surface of the oxidized samples were mainly Al2O3, Cr2O3. Other less protective oxide such as spinels (NiCr2O4 and CoCr2O4) and TiO2 were also detected as oxidation products. The conventional alloy exhibited slight internal oxidation at 800 °C and an enhanced resistance at 900 °C and 1000 °C. The Nb-modified alloy presented an exacerbated internal oxidation and nitridation at 900 °C and 1000 °C and an enhanced resistance at 800 °C. At 1000 °C, Nb-modified alloy was particularly affected by excessive spalling as the main damage mechanisms. From a kinetic point of view, both alloys exhibit the same behavior at 800 °C and 900 °C, with kp values typical of alumina forming alloys (2 × 10−14 to 3.6 × 10−13 g2 cm−4 s−1). However, Ta modified alloys exhibited superior oxidation resistance at 1000 °C when compared to the Nb modified alloy due to better adherence of the protective oxide scale.
Oriented materials are of great importance, but their formation is rarely described. Here, nine Al/Al2O3 systems were designed to identify the dominant factors. Electron back-scattered diffraction indicates that the new Al crystal(s) with one or multiple orientation(s) can be stimulated by one single-crystal Al2O3 substrates. Synchrotron radiation diffraction shows that the preferred orientation(s) is/are determined based on the initial stage of the liquid–solid transition. The nonpreferred orientation can be suppressed through competition.