首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   578篇
  免费   32篇
  国内免费   13篇
电工技术   14篇
综合类   6篇
化学工业   118篇
金属工艺   17篇
机械仪表   32篇
建筑科学   15篇
能源动力   25篇
轻工业   35篇
水利工程   8篇
石油天然气   16篇
无线电   89篇
一般工业技术   94篇
冶金工业   26篇
原子能技术   4篇
自动化技术   124篇
  2024年   4篇
  2023年   11篇
  2022年   21篇
  2021年   37篇
  2020年   30篇
  2019年   38篇
  2018年   55篇
  2017年   47篇
  2016年   45篇
  2015年   16篇
  2014年   25篇
  2013年   51篇
  2012年   42篇
  2011年   42篇
  2010年   39篇
  2009年   29篇
  2008年   18篇
  2007年   19篇
  2006年   15篇
  2005年   9篇
  2004年   7篇
  2003年   5篇
  2002年   2篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   2篇
  1995年   1篇
  1994年   5篇
排序方式: 共有623条查询结果,搜索用时 15 毫秒
531.
Association of water with natural gas streams can highly affect processing and transmission of natural gas. Therefore, the water content of the natural gas must be known in order to determine best possible processing and transmission conditions. This study aims to develop a simple predictive approach to predict water content of sweet gas in wide pressure and temperature ranges, using a radial basis function artificial neural network. The proposed model shows lower deviation from experimental data compared to existing empirical correlation. R-squared and mean relative error values are 0.998% and 4.07%, respectively.  相似文献   
532.
Despite possessing outstanding features, phase-controlled converters are also known for their control performance deterioration whenever their output currents become discontinuous. This paper aims to provide a mathematical framework to overcome converter input/output characteristic nonlinearities, arising from discontinuous current conduction regime. A secondary purpose is to expand the idea of Predictive Current Control (PCC) for phase-controlled converters, taking into account multiple discontinuous current conduction modes. To this end, starting with a detailed converter circuit analysis, equations describing boundaries between converter operating modes are derived and depicted as a graph. The resulted graph is utilized to devise an algorithm to identify mode of operation and to calculate firing angle corresponding to “desired average output voltage”. Experiments in conjunction with simulation studies are conducted to evaluate the assumptions made, the equations derived, and the algorithm devised. Based on the proposed algorithm, two improvements on converter current control are achieved. Firstly; the transfer characteristic of the converter is linearized. Secondly; the PCC strategy, which has attracted much attention recently, is implemented in Single Phase Full Controlled (SPFC) converter. Moreover, the comprehensive treatment of all operating mode boundaries presented in this paper helps deepen physical insight into the SPFC converter operation.  相似文献   
533.
We consider the problem of distributed state estimation over a sensor network in which a set of nodes collaboratively estimates the state of a continuous‐time linear time‐varying system. In particular, our work focuses on the benefits of weight adaptation of the interconnection gains in distributed Kalman filters. To this end, an adaptation strategy is proposed with the adaptive laws derived via a Lyapunov‐redesign approach. The justification for the gain adaptation stems from a desire to adapt the pairwise difference of state estimates as a function of their agreement, thereby enforcing an interconnection‐dependent gain. In the proposed scheme, an adaptive gain for each pairwise difference of the interconnection terms is used in order to address edge‐dependent differences in the state estimates. Accounting for node‐specific differences, a special case of the scheme is also presented, where it uses a single adaptive gain in each node estimate and which uniformly penalizes all pairwise differences of state estimates in the interconnection term. The filter gains can be designed either by standard Kalman filter or Luenberger observer to construct the adaptive distributed Kalman filter or adaptive distributed Luenberger observer. Stability of the schemes has been shown, and it is not restricted by the graph topology and therefore the schemes are applicable to both directed and undirected graphs. The proposed algorithms offer a significant reduction in communication costs associated with information flow by the nodes. Finally, numerical studies are presented to illustrate the performance and effectiveness of the proposed adaptive distributed Kalman filters. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
534.
The design of a power-efficient second-order Δ/Σ modulator for voice-band is presented. At system level, a new single-loop, single-stage modulator is proposed. The modulator employs only one class-AB op-amp to realize a second-order noise shaping for voice-band applications. The modulator is designed in a 0.25μm standard CMOS process, and exhibits 86 dB dynamic range (DR) for a 4 kHz voice-bandwidth. The proposed modulator consumes 125μW from a 2.5 V supply. Aminghasem Safarian received the B.S. and M.S. degrees in electrical engineering from the Sharif University of Technology, in 2000, 2002, respectively. Since 2003 he is a research assistant at University of California, Irvine, working toward his Ph.D. degree in electrical engineering emphasizing on RF IC design for wireless communication systems. During the summer of 2005, he was with Broadcom Corporation, Irvine, CA, where he developed integrated receivers for RFID and WCDMA applications. Farzad Sahandiesfanjani was born in Tabriz, Iran in 1976. He received the B.S. and M.S. degrees in electronics from Sharif University of Technology, Tehran, Iran, in 1998 and 2000, respectively. The subject of his thesis was the design of 4th order cascade delta-sigma modulator for ADSL Analog Front End. From 1998 to 2003, he was with Emad Semicon Co., Tehran, Iran, where he designed circuits for voice application such as CODEC and SLIC chip. He also designed a 3rd order single loop class-D delta-sigma modulator for audio application. He joined Tripath Technology Inc., San Jose, CA, in 2003 and has been working on the design of analog and mixed-signal circuits for class-T audio power amplifier. He is also author of one patent for inductor-less switching audio power amplifier and also co-author of 3 more pending patents and 4 papers. Payam Heydari (S'98–M'00) received the B.S. and M.S. degrees (with honors) in electrical engineering from the Sharif University of Technology, in 1992, 1995, respectively. He received the Ph.D. degree in electrical engineering from the University of Southern California, in 2001. During the summer of 1997, he was with Bell-Labs, Lucent Technologies, Murray Hill, NJ, where he worked on noise analysis in deep submicron very large-scale integrated (VLSI) circuits. During the summer of 1998, he was with IBM T. J. Watson Research Center, Yorktown Heights, NY, where he worked on gradient-based optimization and sensitivity analysis of custom-integrated circuits. Since August 2001, he has been an Assistant Professor of Electrical Engineering at the University of California, Irvine, where his research interest is the design of high-speed analog, radio-frequency (RF), and mixed-signal integrated circuits. Dr. Heydari has received the 2005 National Science Foundation (NSF) CAREER Award, the 2005 IEEE Circuits and Systems Society Darlington Award, the 2005 Henry Samueli School of Engineering Teaching Excellence Award, the Best Paper Award at the 2000 IEEE International Conference on Computer Design (ICCD), the 2000 Honorable Award from the Department of EE-Systems at the University of Southern California, and the 2001 Technical Excellence Award in the area of Electrical Engineering from the Association of Professors and Scholars of Iranian Heritage (APSIH). He was recognized as the 2004 Outstanding Faculty at the EECS Department of the University of California, Irvine. His name was included in the 2006 Who's Who in America. Dr. Heydari is an Associate Editor of the IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—part I. He currently serves on the Technical Program Committees of Custom Integrated Circuits Conference (CICC), International Symposium on Low-Power Electronics and Design (ISLPED), International Symposium on Quality Electronic Design (ISQED), and the Local Arrangement Chair of the ISLPED conference. He was the Student Design Contest Judge for the DAC/ISSCC Design Contest Award in 2003, the Technical Program Committee member of the IEEE Design and Test in Europe (DATE) from 2003 to 2004, and International Symposium on Physical Design (ISPD) in 2003. Mojtaba Atarodi received his Ph.D degree from USC (the University of Southern California, Los Angeles), in electrical engineering Electro-physics in 1993, his M.S from University of California at Irvine, and his B.SEE from the Tehran Polytechnic University with first Grade honor. Following his Ph.D completion, he was with Linear Technology Corporation from 1993 to 1996 as an analog design engineer. He has been with Sharif University of Technology as an Assistant and Visiting Professor since 1997. The Author of more than 50 technical journal and conference papers an a book on Analog CMOS IC Design, Dr Atarodi’s main research interests are analog and RF IC system, circuit, and signal processing design as well as analog synthesis tools. Having held several management and consulting positions during the last 15 years in the US industry, he holds one US patent in analog highly linear tunable Operational Transconductance Amplifiers and has applied for 5 more US patents as well.  相似文献   
535.
This paper presents a new quasi-resonant DC-link (QRDCL) inverter. Only one switching device is used to create zero voltage instants under all load conditions. The maximum voltage across the inverter devices is maintained at around (1.01-1.1) times the input source voltage. The circuit has the flexibility of selecting switching instants of the resonant link in synchronism with any PWM technique. Control technique does not require the help of inverter switches to create the zero voltage instants in the DC-link, and voltage and current sensors are eliminated from the control circuit. In this paper, the principle of operation and detailed analysis of the proposed QRDCL inverter are presented and design considerations for achieving soft switching are obtained. Detailed PSPICE simulation studies are carried out to study the feasibility of the proposed topology under various load conditions. The experimental results of the proposed QRDCL PWM inverter feeding a three phase induction motor are given.  相似文献   
536.
We solve the transmitter optimization problem and determine a necessary and sufficient condition under which beamforming achieves Shannon capacity in a linear narrowband point-to-point communication system employing multiple transmit and receive antennas with additive Gaussian noise. We assume that the receiver has perfect channel knowledge while the transmitter has only knowledge of either the mean or the covariance of the channel coefficients. The channel is modeled at the transmitter as a matrix of complex jointly Gaussian random variables with either a zero mean and a known covariance matrix (covariance information), or a nonzero mean and a white covariance matrix (mean information). For both cases, we develop a necessary and sufficient condition for when the Shannon capacity is achieved through beamforming; i.e., the channel can be treated like a scalar channel and one-dimensional codes can be used to achieve capacity. We also provide a waterpouring interpretation of our results and find that less channel uncertainty not only increases the system capacity but may also allow this higher capacity to be achieved with scalar codes which involves significantly less complexity in practice than vector coding.  相似文献   
537.
Prediction of critical desalination parameters (recovery and salt rejection) of two distinct processes based on real operational data is presented. The proposed method utilizes the radial basis function network using data clustering and histogram equalization. The scheme involves center selection and shape adjustment of the localized receptive fields. This algorithm causes each group of radial basis functions to adapt to regions of the clustered input space. Networks produced by the proposed algorithm have good generalization performance on prediction of non-linear input–output mappings and require a small number of connecting weights. The proposed method was used for the prediction of two different critical parameters for two distinct Reverse Osmosis (RO) plants. The simulation results indeed confirm the effectiveness of the proposed prediction method.  相似文献   
538.
Zhou  L. Safarian  A. Heydari  P. 《Electronics letters》2006,42(21):1213-1214
A new second-order all-pass filter with maximum achievable delay-bandwidth-product (DBW) is presented. The proposed circuit will be used as a wideband delay element in impulse radio ultra-wideband transceivers. Benefiting from a simple architecture, the proposed circuit achieves a 60 ps delay across a 10 GHz bandwidth, which is the largest delay ever reported over such a wide bandwidth. In addition, the most noticeable advantage of this delay circuit is the small variation of group delay across a wide frequency range, which means negligibly small phase distortion introduced by the circuit  相似文献   
539.
Cognitive radios are promising solutions to the problem of overcrowded spectrum. In this article we explore the throughput potential of cognitive communication. Different interpretations of cognitive radio that underlay, overlay, and interweave the transmissions of the cognitive user with those of licensed users are described. Considering opportunistic communication as a baseline, we investigate the throughput improvements offered by the overlay methods. Channel selection techniques for opportunistic access such as frequency hopping, frequency tracking, and frequency coding are presented. The trade-off between regulation and autonomy inherent in the design and performance of cognitive networks is examined through a simple example, which shows that the optimal amount of licensing is equal to the duty cycle of the traffic arrivals  相似文献   
540.
The population of Iran has nearly doubled in less than 25 years, while the number of university students has increased more than 10 times and 720 Ph. D. degrees have been awarded in basic science in the past 10 years. Despite the great difficulties that the Iranian scientists have been facing for more than two decades (as a consequence of a social revolution, 8 years of a destructive war imposed by Iraq, excessive brain drain, discriminatory practices by some international journals in publishing the Iranian articles, and unfair sanctions imposed by the industrialized countries) Iran's science is still thriving and the current number of yearly scientific publications exceeds 1500. When normalized with respect to the number of researchers and the research budget, the Iranian scientists seem to outperform most of their counterparts in the advanced industrialized nations. Main reason: total engagement in truncated research activities (basic or applied) leading solely to pure publications; lack of infrastructure for developmental research activities leading to new technologies. The average impact factor of the papers in various fields of basic science seems quite satisfactory considering the difficult conditions the Iranian scientists are working under. Should the research budgets and conditions improve and the unfair sanctions currently imposed by the world politics be eliminated, a far better contribution to the world science can be expected. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号