首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   2篇
电工技术   1篇
化学工业   24篇
金属工艺   5篇
机械仪表   9篇
建筑科学   6篇
能源动力   18篇
轻工业   1篇
无线电   9篇
一般工业技术   23篇
冶金工业   28篇
自动化技术   19篇
  2022年   1篇
  2021年   3篇
  2020年   2篇
  2018年   1篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2013年   14篇
  2012年   2篇
  2011年   7篇
  2010年   11篇
  2009年   8篇
  2008年   6篇
  2007年   10篇
  2006年   5篇
  2005年   2篇
  2004年   4篇
  2003年   3篇
  2002年   4篇
  2001年   6篇
  2000年   4篇
  1999年   7篇
  1998年   10篇
  1997年   3篇
  1996年   3篇
  1995年   4篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   4篇
  1990年   1篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
排序方式: 共有143条查询结果,搜索用时 46 毫秒
101.
Amorphous tris(8‐hydroxyquinoline)aluminum (AlQ3) nanoparticles can be grown directly into α‐phase crystalline nanowires in a one‐step heat treatment. At the most appropriate Ar pressure, heating time, and heating temperatures (between 150 and 190 °C), fine and long nanowires are obtained. The growth of the nanowires is dictated by the anisotropic bonding in α‐AlQ3 crystals. The growth mechanism is illustrated by the concept of nucleation and molecular migration. Two exotherms are revealed, from differential scanning calorimetry analyses, in the transformation process of AlQ3 amorphous nanoparticles to crystalline nanowires. The first exotherm is the transition from amorphous nanoparticles to the γ‐phase, and the second exotherm is the transition from the γ‐ to the α‐phase. By means of Kissinger plots, the activation energies for the crystallization of the γ‐phase and the transition from the γ‐ to the α‐phase are calculated, for the first time, to be 9.7 and 12.1 kJ mol–1, respectively. A blue‐shift and higher intensity of photoluminescence after heat treatment are also demonstrated.  相似文献   
102.
Polypropylene microporous tubular membranes were prepared by using camphene as solvent and through thermally induced phase separation at various quenching temperatures. Characterization of the resulting membrane included scanning electron microscopy, differential scanning calorimetry, and wide angle X-ray scattering. Microscopic observation showed that the membrane was composed of spherical clusters and had a leafy structure. The crystallinity increased with the quenching temperature. The crystalline structure was of smectic form. Permeation performance was also determined, including pure water permeability and retention of dextran. The results showed that at lower quenching temperatures, the structure of membrane was denser. Therefore, the permeability was lower and the retention was higher.  相似文献   
103.
SIMPLE-C algorithm and Arrhenius form of reaction model were employed to simulate the three-dimensional laminar flow field and the chemical reaction in a cylindrical methanol reformer under steam reforming. The effects of geometrical and thermo-fluid parameters on the CO and CO2 productions as well as the heat and mass transfer in a cylindrical methanol reformer with a constant-volume catalyst bed will be observed in the present study. Low CO concentration in hydrogen-rich gas denotes a low load of CO removal in purifying processes. The results indicate that the smaller diameter-to-length ratio of chamber with a thicker catalyst bed enhances the methanol conversion and reduces the overall CO concentration in the cylindrical methanol reformer. This is because that a lower temperature distribution restrains the reverse water–gas-shift reaction to reduce the production of CO with a thicker catalyst bed.  相似文献   
104.
Three two-phase Fe-Mn-Al alloys with nominal compositions, Fe-24Mn-9Al, Fe-27Mn-9Al-3Cr,. and Fe-27Mn-9Al-6Cr, were prepared in the solution-treated and cold-rolled conditions. The fractions of ferrite in the solution-treated condition were controlled at 46 to 60 pct, mainly by adjusting the carbon content and the relative amounts of Mn and Al. The ferrite fractions were reduced to 30 to 37 pct after 75 pct deformation by cold-rolling. Specimens were tensile tested at open circuit in aerated 3.5 pct NaCl solution at slow strain rates ranging from 4 × 10-7 to 4 × 10-5 s-1 at room temperature. All of the alloys were quite susceptible to environmentally assisted cracking (EAC). The deformed specimens showed less susceptibility, presumably because the plasticity was already too limited. The EAC appeared to occur at or after the onset of plastic deformation. In this alloy system, the ferritic phase was less resistant to EAC than the austenitic phase, in contrast to the Fe-Cr-Ni stainless steels. The crack propagated preferentially through the ferrite grains or along the ferrite/austenite grain boundaries. The addition of up to 6 pct Cr did not improve the EAC resistance. Formerly Graduate Student, Department of Materials Science and Engineering, National Tsing Hua University  相似文献   
105.
Two phosphonate‐containing bismaleimide (BMI) [(4,4′‐bismaleimidophenyl)phosphonate] monomers with different melting temperatures and similar curing temperatures were synthesized by reacting N‐hydroxyphenylmaleimide with two kinds of dichloride‐terminated phosphonic monomers. The BMI monomers synthesized were identified with 1H‐, 13C‐, and 31P‐nuclear magnetic resonance (NMR) spectroscopy and elemental analysis. The phosphonate‐containing BMI monomers react with a free‐radical initiator to prepare phosphonate‐containing BMI polymers and also with various aromatic diamines to prepare a series of polyaspartimides as reactive flame retardants. The polymerization degrees of polyaspartimides depend on the alkalinity and nucleophility of diamines as chain extenders. Differential scanning calorimetry (DSC) and thermogravimetry analysis (TGA) were used to study the thermal properties of the phosphonate‐containing BMI resins such as the melting temperature, curing temperature, glass transition temperature (Tg), and thermal resistance. All the phosphonate‐containing BMI resins, except the BMI polymers, have a Tg in the range of 210–256°C and show 5% weight loss temperatures (T5%) of 329–434 and 310–388°C in air and nitrogen atmospheres, respectively. The higher heat resistance of cured BMI resin relative to the BMI polymer is due to its higher crosslinking density. Since the recrosslinking reactions of BMI polymers and polyaspartimides occur more easily in an oxidation environment, their thermal stabilities in air are higher than are those in nitrogen gas. In addition, the thermal decomposition properties of polyaspartimides depend on the structures and compositions of both the diamine segments and the BMI segments. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1919–1933, 2002  相似文献   
106.
The high surface-to-volume ratio and feature dimensions of the gas sensors are the key factors for improving the gas response. In this study, a novel method to prepare an Al-doped ZnO (AZO) nanotube oxygen sensor with tunable wall thickness is reported via the ZnO–Al2O3 nanolamination of atomic layer deposition (ALD) using tris(8-hydroxyquinoline) gallium nanowire (GaQ3NW) as a template. The ALD of Al2O3 significantly enhances wall uniformity and decreases the wall thickness of the AZO nanotubes. In addition, the incorporation of Al2O3 allows full coverage of AZO on GaQ3NWs. With an increase in the Al2O3 fraction, the carrier concentration increases, but the depth of the depletion layer and gas response of the nanotube sensor are reduced. The gas response of the nanotubes is inversely proportional to wall thickness, suggesting that it is a function of the surface-to-volume ratio. When the wall thickness is decreased to 12 nm, the gas response of AZO nanotubes with 2% Al increases significantly to 7. This can be explained by the grain control model, because thin wall leads to the formation of fully charge-depleted nanotubes.  相似文献   
107.
Historical building preservation is becoming increasingly important world-wide due to the emphasis on cultural heritage and its potential benefits. Restoration management and cost allocation for these valuable buildings have been constant concerns. This study discusses problems concerning restoration budget allocation for historical buildings of the Tainan local government. A new contracting method based on genetic algorithm (GA) is presented to support decision makers in determining the optimal budget allocation and relevant contracting methods. Compared with traditional contracting methods, the result of a pilot test shows that the new method provides more effective and economical decision suggestions. Lessons learned in Tainan city could be useful for many other cities that are facing similar problems.  相似文献   
108.
One-dimensional (1D) organic and organometallic nanomaterials are of considerable interests for both fundamental research and potential applications. They are likely to play critical roles in improving the efficiency of various electronic, photonic, biosensing devices, etc. In this context, the authors present a comprehensive review of current research on 1D organic and organometallic nanostructures. The synthetic strategies for achieving the 1D growth are elucidated by four categories: (1) template-based synthesis, (2) vapor-solid method, (3) solution-based self-assembly, and (4) dictation by the anisotropic nature. The unique thermal, optical, electronic, field emission properties and biocidal activity of 1D organic and organometallic nanostructures are consequently highlighted. Some promising applications in (integrated) molecular electronic, optoelectronic and photonic devices are also discussed.  相似文献   
109.
Nano-structured Cu2O solar cells fabricated on sparse ZnO nanorods   总被引:1,自引:0,他引:1  
Nano-structured Cu2O/ZnO nanorod (NR) heterojunction solar cells fabricated on indium tin oxide (ITO)-coated glass are studied. Substrate film and NR density have a strong influence on the preferred growth of the Cu2O film. The X-ray diffractometer (XRD) analysis results show that highly (2 0 0)-preferred Cu2O film was formed when plating on plain ITO substrate. However, a highly (1 1 1)-preferred Cu2O film was obtained when plating on sparse ZnO NRs. SEM, TEM and XRD studies on sparse NR samples indicate that the Cu2O nano-crystallites mostly initiate its nucleation on the peripheral surfaces of the ZnO NRs, and are also highly (1 1 1)-oriented. Solar cells with ZnO NRs yielded much higher efficiency than those without. In addition, ZnO NRs plated on a ZnO-coated ITO glass significantly improve the shunt resistance and open-circuit voltage (Voc) of the devices, with consistently much higher efficiency obtained than when ZnO NRs are directly plated on ITO film. However, longer NRs do not improve the efficiency due to low short-circuit current (Jsc) and slightly higher series resistance. The best conversion efficiency of 0.56% was obtained from a Cu2O/ZnO NRs heterojunction solar cell fabricated on a 80 nm ZnO-coated ITO glass with Voc=0.514 V, Jsc=2.64 mA/cm2 and 41.5% fill factor.  相似文献   
110.
The hydrogen production rates from deionized water and 20% methanol solution, with or without the presence of Ta3N5, WO3, and the indirect Z-scheme Ta3N5/WO3, were investigated. Under irradiation of a 300 W Xe lamp, all of these three catalysts assisted hydrogen generation in deionized water. In the methanol solution, Ta3N5, and WO3 reduced the hydrogen generation, but Ta3N5/WO3 significantly enhanced the hydrogen production rate by seven times. Under visible light irradiation, the effects of the three catalysts are different from those under full spectrum irradiation. The mechanisms based on the competition of methanol decomposition and water reduction in the presence of catalyst under different irradiation conditions are proposed to explain the different hydrogen generation behaviors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号