首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   853篇
  免费   60篇
  国内免费   8篇
电工技术   27篇
综合类   7篇
化学工业   198篇
金属工艺   33篇
机械仪表   41篇
建筑科学   27篇
矿业工程   8篇
能源动力   29篇
轻工业   80篇
水利工程   23篇
石油天然气   20篇
无线电   94篇
一般工业技术   106篇
冶金工业   37篇
原子能技术   3篇
自动化技术   188篇
  2024年   3篇
  2023年   12篇
  2022年   28篇
  2021年   58篇
  2020年   65篇
  2019年   62篇
  2018年   86篇
  2017年   81篇
  2016年   69篇
  2015年   32篇
  2014年   61篇
  2013年   103篇
  2012年   69篇
  2011年   53篇
  2010年   43篇
  2009年   33篇
  2008年   25篇
  2007年   14篇
  2006年   7篇
  2005年   1篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1991年   1篇
  1990年   1篇
  1989年   2篇
  1978年   1篇
  1977年   2篇
排序方式: 共有921条查询结果,搜索用时 15 毫秒
61.
A new integrated, low‐noise, low‐power, and area‐efficient multichannel receiver for magnetic resonance imaging (MRI) is described. The proposed receiver presents an alternative technique to overcome the use of multiple receiver front‐ends in parallel MRI. The receiver consists of three main stages: low‐noise pre‐amplifier, quadrature down‐converter, and a band pass filter (BPF). These components are used to receive the nuclear magnetic resonance signals from a 3 × 3 array of micro coils. These signals are combined using frequency domain multiplexing (FDM) method in the pre‐amplifier and BPF stages, then amplified and filtered to remove any out‐of‐band noise before providing it to an analog‐to‐digital converter at the low intermediate frequency stage. The receiver is designed using a 90 nm CMOS technology to operate at the main B0 magnetic field of 9.4 T, which corresponds to 400 MHz. The receiver has an input referred noise voltage of 1.1 nV/√Hz, a total voltage gain of 87 dB, a power consumption of 69 mA from a 1 V supply voltage, and an area of 305 µm × 530 µm including the reference current and bias voltage circuits. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
62.
In this paper, a design of analog delay locked loop is introduced in which new techniques are applied to eventually increase operating frequency range and reduce jitter considerably. In this design, all blocks of a delay locked loop including a voltage controlled delay line, charge pump, and loop filter are accurately designed. A new delay cell is proposed with wide delay range, in which increase of delay range results in using fewer cells, and consequently the power consumption will decrease. Current mirror techniques and feedback in the proposed charge pump also cause higher current matching and better jitter performance. This delay locked loop, which is designed with TSMC 0.18‐μm CMOS technology, has a wide frequency range from 217 to 800 MHz. It consumes maximum 3.4‐mW and minimum 2.6‐mW power dissipation in source voltage of 1.8 V, which is suitable for low power applications. It also has an appropriate lock time that is at least equal to 3 clock cycles at 217 MHz and at most 25 clock cycles at 800 MHz. Jitter performance in this delay locked loop is improved significantly: RMS jitter is 0.65 ps at 800 MHz and 2.54 ps at 217 MHz. Moreover, its maximum peak‐to‐peak jitter is equal to 5.17 ps, and its minimum peak‐to‐peak jitter is equal to 1.39 ps at 217 and 800 MHz, respectively.  相似文献   
63.
In this paper, an adaptive neural output‐feedback control approach is considered for a class of uncertain multi‐input and multi‐output (MIMO) stochastic nonlinear systems with unknown control directions. Neural networks (NNs) are applied to approximate unknown nonlinearities, and K‐filter observer is designed to estimate unavailable system's states. Due to utilization of Nussbaum gain function technique in the proposed approach, the singularity problem and requirement to prior knowledge about signs of high‐frequency gains are removed, simultaneously. Razumikhin functional method is employed to deal with unknown state time‐varying delays, so that the offered control approach is free of common assumptions on derivative of time‐varying delays. Also, an adaptive neural dynamic surface control is developed; hence, explosion of complexity in conventional backstepping method is eliminated, effectively. The boundedness of all the resulting closed‐loop signals is guaranteed in probability; meanwhile, convergence of the tracking errors to adjustable compact set in the sense of mean quartic value is also proved. Finally, simulation results are shown to verify and clarify efficiency of the offered approach. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
64.
This paper presents 2‐novel linear matrix inequality (LMI)‐based adaptive output feedback fault‐tolerant control strategies for the class of nonlinear Lipschitz systems in the presence of bounded matched or mismatched disturbances and simultaneous occurrence of actuator faults, including failure, loss of effectiveness, and stuck. The constructive algorithms based on LMI with creatively using Lyapunov stability theory and without the need for an explicit information about mode of actuator faults or fault detection and isolation mechanism are developed for online tuning of adaptive and fixed output‐feedback gains to stabilize the closed‐loop control system asymptotically. The proposed controllers guarantee to compensate actuator faults effects and to attenuate disturbance effects. The resulting control methods have simpler structure, as compared with most existing recent methods and more suitable for practical systems. The merits of the proposed fault‐tolerant control scheme have been verified by the simulation on nonlinear Boeing 747 lateral motion dynamic model subjected to actuator faults.  相似文献   
65.
Bi-supported Ziegler–Natta catalysts (TiCl4/MCM-41/MgCl2 (ethoxide type)) were synthesized to improve the morphology and the properties of polyethylene. The morphology control is a crucial issue in polymerization process, while tailoring the properties of polymers is needed for specific applications. The catalysts were synthesized in different ratios of two supports with impregnation method. The polymerization process was carried out in atmospheric slurry reactor. The catalysts were characterized with scanning electron microscopy - energy dispersive X-ray spectroscopy (SEM–EDX), inductively coupled plasma, Fourier transform infrared spectrometry (FTIR), and Brunauer-Emmett-Teller (BET) methods. The polymers were analyzed with scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry, FTIR, and tensile-strength analyses. Ubbelohde viscometer and frequency sweep measurements showed that the synthesized polymers are ultra-high-molecular-weight polyethylene. Mechanical properties of polymers showed higher Young's modulus in samples containing MCM-41, having higher thermal stability supported by TGA analysis. SEM images of bi-supported catalyst showed a controlled spherical morphology with uniform size distribution. SEM analysis support that the polymers replicate their morphology from catalyst, improving their morphology comparing to MgCl2-supported catalyst. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48553.  相似文献   
66.
ZrP2O7 nanoparticles as an efficient catalyst have been used for the preparation of benzopyrano[2,3-b]pyridines from the four-component condensation reaction of salicylalde-hydes, thiols, and 2 equiv. of malononitrile under reflux conditions in ethanol in excellent yields and short reaction times.  相似文献   
67.
The 1-octyl-3-methylimidazolium chloride, [C_8 mim][Cl] ionic liquid(IL) was used as a novel surfactant in n-heptane/water system. The interfacial tensions(IFT) were measured and corresponding variations were investigated. An IFT reduction of 80.8% was appropriate under the IL CMC of about 0.1 mol·L~(-1) and stronger effects were achieved when magnetite nanoparticles and salts were present profoundly under alkaline p Hs.The equilibrium IFT data were accurately simulated with the Frumkin adsorption model. Hereafter, the saturated surface concentration, equilibrium constant and interaction parameter were obtained and their variations were demonstrated. Further, emulsion stability and contact angle of oil/water interface over quartz surface were studied. The oil/water emulsion stability was hardly changed with nanoparticles; however, the stability of oil/water + IL emulsions was significantly improved. It was also revealed that the presence of sodium and calcium chloride electrolytes fortifies the IL impact, whereas sodium sulfate weakens. From dynamic IFT data and fitting with kinetic models, it was found that the IL migration toward interface follows the mixed diffusion–kinetic control model. Consequently, the IL diffusion coefficient and the appropriate activation energy were determined.  相似文献   
68.
The preparation and characterization of a novel type of castor oil-based polymer inclusion membrane (PIM) was investigated, focusing on its flux and selective recovery of Ca2+ over competitive ions such as K+, Na+, and Mg2+. The PIM contains a cross-linked high-molecular-weight green polyol (GPO) as a polymer base, benzene-18-crown-6 as a carrier, and an ionic liquid called 1-Butyl-3-methylimidazolium chloride as a plasticizer. GPO was first synthesized by a reaction between an epoxidized castor oil and a cellulose acetate, thereafter, cross-linked by isophorene isocyanate. The base polymer and the prepared PIM were characterized by gel permeation chromatography (GPC), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), atomic force microscopy (AFM), thermogravimetric analysis (TGA), and X-ray diffraction (XRD). The FTIR results indicate that oxirane groups in the epoxidized castor oil molecules reacted with the primary hydroxyl groups of cellulose acetate chains. The contact angle measurement hints at the hydrophobic characteristics of the prepared membrane. Compared to the PVC-, CA-, and PVDF-based polymer inclusion membrane, the cured GPO-based PIM, showed higher selectivity and flux of calcium ions with the same composition. The greater stability and significantly higher surface roughness are further favorable features of the novel PIM.  相似文献   
69.
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号