首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6615篇
  免费   482篇
  国内免费   18篇
电工技术   129篇
综合类   9篇
化学工业   1428篇
金属工艺   245篇
机械仪表   409篇
建筑科学   128篇
矿业工程   2篇
能源动力   235篇
轻工业   637篇
水利工程   22篇
石油天然气   6篇
无线电   1152篇
一般工业技术   1415篇
冶金工业   416篇
原子能技术   71篇
自动化技术   811篇
  2024年   5篇
  2023年   81篇
  2022年   94篇
  2021年   220篇
  2020年   157篇
  2019年   182篇
  2018年   220篇
  2017年   218篇
  2016年   251篇
  2015年   229篇
  2014年   323篇
  2013年   436篇
  2012年   445篇
  2011年   528篇
  2010年   348篇
  2009年   395篇
  2008年   347篇
  2007年   265篇
  2006年   280篇
  2005年   227篇
  2004年   209篇
  2003年   183篇
  2002年   178篇
  2001年   147篇
  2000年   124篇
  1999年   128篇
  1998年   205篇
  1997年   139篇
  1996年   78篇
  1995年   83篇
  1994年   67篇
  1993年   60篇
  1992年   45篇
  1991年   37篇
  1990年   30篇
  1989年   23篇
  1988年   10篇
  1987年   17篇
  1986年   16篇
  1985年   12篇
  1984年   15篇
  1983年   10篇
  1982年   4篇
  1981年   3篇
  1980年   5篇
  1979年   7篇
  1978年   3篇
  1977年   5篇
  1976年   10篇
  1975年   4篇
排序方式: 共有7115条查询结果,搜索用时 15 毫秒
951.
Studies on printable semiconductors and technologies have increased rapidly over recent decades, pioneering novel applications in many fields, such as energy, sensing, logic circuits, and information displays. The newest display technologies are already turning to metal oxide semiconductors, i.e., indium gallium zinc oxide, for the improvements needed to drive active matrix organic light‐emitting diodes. Convenience and portability will be realized with flexible and wearable displays in the future. This report summarizes recent progress on the development of solution‐processed thin film transistors, especially those deposited at low temperatures for next‐generation flexible smart displays. The first part provides an overview on the history and current status of displays. Then, recent advances in state‐of‐the‐art solution‐processed transistors based on different semiconductors are presented, including metal oxides, organic materials, perovskites, and carbon nanotubes. Finally, conclusions are drawn and the remaining challenges and future perspectives are discussed.  相似文献   
952.
The demand to discover every single cellular component has been continuously increasing along with the development of biological techniques. The bottom‐up approach to construct a cell‐mimicking system from well‐defined and tunable compositions is accelerating, with the ultimate goal of comprehending a biological cell. From among the available techniques, the artificial cell has been increasingly recognized as one of the most powerful tools for building a cell‐like system from scratch. This review summarizes the development of artificial cells, from a pure giant unilamellar vesicle (GUV) to a controllable, self‐fueled proteoliposome, both of which are highly compartmentalized. The basic components of an artificial cell, as well as the optimal conditions required for successful, reproducible GUV formation and protein reconstitution, are discussed. Most importantly, progress in studying the metabolic reactions in and the motility of a reconstituted artificial cell are the main focus of the review. The ability to perform a complicated reaction cascade in a controllable manner is highlighted as a promising perspective to obtaining an autonomous and movable GUV.  相似文献   
953.
Upconversion nanoparticles (UCNPs) have been integrated with photonic platforms to overcome the intrinsically low quantum efficiency limit of upconversion luminescence (UCL). However, platforms based on thin films lack transferability and flexibility, which hinders their broader and more practical application. A plasmonic structure is developed that works as a multi‐functional platform for flexible, transparent, and washable near‐infrared (NIR)‐to‐visible UCL films with ultra‐strong UCL intensity. The platform consists of dielectric microbeads decorated with plasmonic metal nanoparticles on an insulator/metal substrate. Distinct improvements in NIR confinement, visible light extraction, and boosted plasmonic effects for upconversion are observed. With weak NIR excitation, the UCL intensity is higher by three orders of magnitude relative to the reference platform. When the microbeads are organized in a square lattice array, the functionality of the platform can be expanded to wearable and washable UCL films. The platform can be transferred to transparent, flexible, and foldable films and still emit strong UCL with a wide viewing angle.  相似文献   
954.
Cephalopods’ extraordinary ability to hide into any background has inspired researchers to reproduce the intriguing ability to readily camouflage in the infrared (IR) and visible spectrum but this still remains as a conundrum. In this study, a multispectral imperceptible skin that enables human skin to actively blend into the background both in the IR‐visible integrated spectrum only by simple temperature control with a flexible bi‐functional device (active cooling and heating) is developed. The thermochromic layer on the outer surface of the device, which produces various colors based on device surface temperature, expands the cloaking range to the visible spectrum (thus visible‐to‐IR) and ultimately completes day‐and‐night stealth platform simply by controlling device temperature. In addition, the scalable pixelization of the device allows localized control of each autonomous pixel, enabling the artificial skin surface to adapt to the background of the sophisticated pattern with higher resolution and eventually heightening the level of imperceptibility. As this proof‐of‐concept can be directly worn and conceals the human skin in multispectral ranges, the work is expected to contribute to the development of next‐generation soft covert military wearables and perhaps a multispectral cloak that belongs to cephalopods or futuristic camouflage gadgets in the movies.  相似文献   
955.
Bilateral teleoperation systems provide a platform for human operators to remotely manipulate slave robots in engaging various tasks in remote environments. Most of the previous studies in bilateral teleoperation were developed under continuous transmission or periodic communication with fixed data exchanging rates. This paper presents control schemes for bilateral teleoperation systems using nonperiodic event‐driven communication. By using P‐like and PD‐like controllers, this study proposes triggering conditions for teleoperators to reduce network access frequency so that robots only transmit output signals when necessary. Stability and position tracking of the control system are studied, and nonzero minimum interevent time is guaranteed. The proposed event‐driven teleoperation is studied with a velocity estimator to avoid the requirement of velocity information in the controller and triggering condition. Without velocity measurements, the boundedness of tracking errors and stability are ensured for teleoperation systems under event‐driven communication. Simulations and experiments are illustrated to validate the performance of the proposed event‐driven teleoperation systems.  相似文献   
956.
This paper describes the design of an adaptive output feedback control system in discrete‐time, based on almost strictly positive real (ASPR)‐ness with a feedforward input. It is well‐known that an adaptive output feedback control system based on ASPR conditions can achieve asymptotic stability via a constant feedback gain. Unfortunately, most realistic systems are not ASPR because of the severe conditions. The introduction of a parallel feedforward compensator (PFC) is an efficient way to alleviate such restrictions. However, the problem remains that there exists a steady state error between the output of the augmented system and the output of the original system. The proposed scheme provides a strategy wherein the feedforward input is utilized such that the steady state error is removed. Furthermore, the fictitious reference iterative tuning (FRIT) approach is employed to determine the control parameters using one‐shot input/output experimental data directly, without prior information about the control system. This paper explains how the FRIT approach is applied in designing an adaptive output feedback control system. The effectiveness of the proposed scheme is confirmed experimentally, by using a motor application.  相似文献   
957.
Understanding the interactions between nanoparticles (NPs) and human immune cells is necessary for justifying their utilization in consumer products and biomedical applications. However, conventional assays may be insufficient in describing the complexity and heterogeneity of cell–NP interactions. Herein, mass cytometry and single‐cell RNA‐sequencing (scRNA‐seq) are complementarily used to investigate the heterogeneous interactions between silver nanoparticles (AgNPs) and primary immune cells. Mass cytometry reveals the heterogeneous biodistribution of the positively charged polyethylenimine‐coated AgNPs in various cell types and finds that monocytes and B cells have higher association with the AgNPs than other populations. scRNA‐seq data of these two cell types demonstrate that each type has distinct responses to AgNP treatment: NRF2‐mediated oxidative stress is confined to B cells, whereas monocytes show Fcγ‐mediated phagocytosis. Besides the between‐population heterogeneity, analysis of single‐cell dose–response relationships further reveals within‐population diversity for the B cells and naïve CD4+ T cells. Distinct subsets having different levels of cellular responses with respect to their cellular AgNP doses are found. This study demonstrates that the complementary use of mass cytometry and scRNA‐seq is helpful for gaining in‐depth knowledge on the heterogeneous interactions between immune cells and NPs and can be incorporated into future toxicity assessments of nanomaterials.  相似文献   
958.
Atherosclerosis development leads to irreversible cascades, highlighting the unmet need for improved methods of early diagnosis and prevention. Disturbed flow formation is one of the earliest atherogenic events, resulting in increased endothelial permeability and subsequent monocyte recruitment. Here, a mesenchymal stem cell (MSC)‐derived nanovesicle (NV) that can target disturbed flow sites with the peptide GSPREYTSYMPH (PREY) (PMSC‐NVs) is presented which is selected through phage display screening of a hundred million peptides. The PMSC‐NVs are effectively produced from human MSCs (hMSCs) using plasmid DNA designed to functionalize the cell membrane with PREY. The potent anti‐inflammatory and pro‐endothelial recovery effects are confirmed, similar to those of hMSCs, employing mouse and porcine partial carotid artery ligation models as well as a microfluidic disturbed flow model with human carotid artery‐derived endothelial cells. This nanoscale platform is expected to contribute to the development of new theragnostic strategies for preventing the progression of atherosclerosis.  相似文献   
959.
Vertical integration of 2D layered materials to form van der Waals heterostructures (vdWHs) offers new functional electronic and optoelectronic devices. However, the mobility in vertical carrier transport in vdWHs of vertical field‐effect transistor (VFET) is not yet investigated in spite of the importance of mobility for the successful application of VFETs in integrated circuits. Here, the mobility in VFET of vdWHs under different drain biases, gate biases, and metal work functions is first investigated and engineered. The traps in WSe2 are the main source of scattering, which influences the vertical mobility and three distinct transport mechanisms: Ohmic transport, trap‐limited transport, and space‐charge‐limited transport. The vertical mobility in VFET can be improved by suppressing the trap states by raising the Fermi level of WSe2. This is achieved by increasing the injected carrier density by applying a high drain voltage, or decreasing the Schottky barrier at the graphene/WSe2 and metal/WSe2 junctions by applying a gate bias and reducing the metal work function, respectively. Consequently, the mobility in Mn vdWH at +50 V gate voltage is about 76 times higher than the initial mobility of Au vdWH. This work enables further improvements in the VFET for successful application in integrated circuits.  相似文献   
960.
Flexible inorganic‐based micro light‐emitting diodes (µLEDs) are emerging as a significant technology for flexible displays, which is an important area for bilateral visual communication in the upcoming Internet of Things era. Conventional flexible lateral µLEDs have been investigated by several researchers, but still have significant issues of power consumption, thermal stability, lifetime, and light‐extraction efficiency on plastics. Here, high‐performance flexible vertical GaN light‐emitting diodes (LEDs) are demonstrated by silver nanowire networks and monolithic fabrication. Transparent, ultrathin GaN LED arrays adhere to a human fingernail and stably glow without any mechanical deformation. Experimental studies provide outstanding characteristics of the flexible vertical μLEDs (f‐VLEDs) with high optical power (30 mW mm?2), long lifetime (≈12 years), and good thermal/mechanical stability (100 000 bending/unbending cycles). The wireless light‐emitting system on the human skin is successfully realized by transferring the electrical power f‐VLED. Finally, the high‐density GaN f‐VLED arrays are inserted onto a living mouse cortex and operated without significant histological damage of brain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号