首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   528篇
  免费   52篇
  国内免费   1篇
电工技术   10篇
化学工业   161篇
金属工艺   4篇
机械仪表   8篇
建筑科学   26篇
能源动力   10篇
轻工业   132篇
水利工程   3篇
石油天然气   1篇
无线电   35篇
一般工业技术   97篇
冶金工业   44篇
自动化技术   50篇
  2024年   2篇
  2023年   10篇
  2022年   22篇
  2021年   36篇
  2020年   20篇
  2019年   26篇
  2018年   32篇
  2017年   21篇
  2016年   26篇
  2015年   25篇
  2014年   12篇
  2013年   26篇
  2012年   25篇
  2011年   45篇
  2010年   29篇
  2009年   15篇
  2008年   30篇
  2007年   25篇
  2006年   22篇
  2005年   22篇
  2004年   15篇
  2003年   18篇
  2002年   11篇
  2001年   6篇
  2000年   2篇
  1999年   5篇
  1998年   3篇
  1997年   7篇
  1996年   4篇
  1995年   6篇
  1994年   3篇
  1993年   3篇
  1992年   5篇
  1991年   5篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   5篇
  1986年   1篇
  1985年   3篇
  1983年   1篇
  1979年   1篇
  1977年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有581条查询结果,搜索用时 328 毫秒
81.
Sandwich packings, consisting of alternatingly stacked conventional structured packings with different geometric surface areas, are promising for increasing capacity and efficiency of separation columns. Film flow and froth flow evolve along a stack, which requires comprehensive fluid dynamic analysis. In particular, the froth height is an essential parameter to determine the spatial extent of the flow regimes. Ultrafast X‐ray tomography and a 3D‐printed pressure drop profile measurement module were applied to independently estimate this parameter. The results are compared with existing correlations.  相似文献   
82.
Flame-retardant polypropylene (FR-PP) materials are realized by use of natural-sourced flame-retardant materials. Phosphorylated sodium alginate, ammonium polyphosphate, and dipentaerythritol are used to create an intumescent flame retardant (IFR). This realized flame retardant is embedded into polypropylene (PP) through melt blending method. The components, chemical structures, thermal properties, and degradation mechanisms of the samples are characterized by infrared spectrometry, thermogravimetric analysis, differential scanning calorimetry, scanning electron microscopy, and cone calorimeter test. The results indicate that an effective IFR is obtained due to gas phase and condensed phase synergistic flame-retardant ability during combustion and degradation of FR-PP. This work presents a facile method for preparing FR-PP with efficient flame retardancy. This study is a first proof of concept for an innovative flame retardant, which could find application in future in the fields of automotive industry and the construction of electronic devices. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47794.  相似文献   
83.
We examined the effects of 2 grass silage-based diets differing in forage:concentrate (FC) ratio and those of a red clover silage-based diet on intake, milk production, ruminal fatty acid (FA) biohydrogenation, milk FA composition, and milk fat globule (MFG) size distribution. Ten multiparous Nordic Red cows received the following treatments: grass silage-based diets containing high (70:30, HG) or low (30:70, LG) FC ratio or a red clover silage-based diet with an FC ratio of 50:50 (RC) on a dry matter basis. Determinations of MFG were performed from fresh milk samples without addition of EDTA so the results of fat globules >1 µm in diameter are emphasized instead of the entire globule population. Lower FC ratio in grass silage-based diets increased milk production with no effect on daily fat yield, leading to 13% lower milk fat concentration. The effect of FC ratio on MFG size was moderate. It did not affect the volume-weighted diameter in grass silage-based diets, although LG lowered the volume-surface diameter of MFG in the size class >1 µm compared with HG. Compared with HG, feeding LG moderately decreased the biohydrogenation of 18:2n-6, leading to a higher level of polyunsaturated fatty acids in milk fat. Feeding RC lowered milk fat concentration and daily milk fat yield compared with grass silage-based diets. The volume-weighted diameter of MFG in the size class >1 µm was smaller in RC milk compared with grass silage-based diets. Feeding RC increased the flow of 18:3n-3 at the omasum by 2.4-fold and decreased the apparent ruminal 18:3n-3 biohydrogenation compared with grass silage-based diets despite similar intake of 18:3n-3. It also resulted in the lowest amount of saturated FA and the highest amounts of cis-9 18:1, 18:3n-3, and polyunsaturated FA in milk. In conclusion, LG decreased milk fat content and induced minor changes in MFG size distribution compared with HG, whereas RC lowered milk fat production, altered milk FA composition to nutritionally more beneficial direction, and led to smaller MFG compared with grass silage-based diets.  相似文献   
84.
85.
Stop flow lithography (SFL) combines aspects of microfluidic and photolithography to continuously fabricate particles with uniform planar shapes as dictated by a mask. In this work we aim to expand the palette of materials suitable for SFL processing by investigating the use of UV-crosslinkable preceramic polymers to make ceramic particles. A commercially available methacrylated-polysiloxane was used as the preceramic polymer and was mixed with 2.5 wt% Irgacure 651 photoinitiator. A simple SFL system was assembled to continuously fabricate UV-crosslinked preceramic polymer particles in the shape of hexagons, triangles, and gears with diameters ranging from 100 to 200 μm and thicknesses of 74 μm +/- 4 μm. Particles were harvested from the excess preceramic solution, cleaned and then pyrolyzed at 1000 °C to transform them into silicon oxycarbide ceramic particles. Particle shape was maintained during pyrolysis despite a ~80 % linear shrinkage due to the removal of acryl and methyl side groups, as confirmed via FTIR. After pyrolysis the outer diameters of the SiOC particles ranged from 20 to 40 μm with thicknesses of 10 μm–12 μm. Pyrolyzed particles were successfully recovered and dispersed in water. This work demonstrates a robust path for the fabrication of ceramic particles with specific shapes from preceramic polymers via SFL.  相似文献   
86.
87.
The so-called Freeze Foaming method aims at manufacturing ceramic cellular scaffolds for diverse applications. One application is dedicated to potential bone replacement material featuring open, micro and interconnected porosity. However, the main challenges of this foaming method is to achieve a homogeneous pore morphology. In a current project, the authors throw light on the bubble/pore and strut formation of this process by in situ computed tomography. This allows for evaluating varying process parameter’s effects on the growth of the ceramic foam during the foaming process. As first result and basis for CT analysis, a stable and reproducible model suspension was developed which resulted in reproducible foam structures. In dependence of selected process parameters like pressure reduction rate or air content in the ceramic suspension resulting Freeze Foams became adjustable with regard to their pore morphology. Pore size and distribution data as well as the porosity were characterized and evaluated accordingly.  相似文献   
88.
We provide normal forms and the global phase portraits on the Poincaré disk of the Abel quadratic differential equations of the second kind having a symmetry with respect to an axis or to the origin. Moreover, we also provide the bifurcation diagrams for these global phase portraits.  相似文献   
89.
90.
Tribological contacts consume a significant amount of the world's primary energy due to friction and wear in different products from nanoelectromechanical systems to bearings, gears, and engines. The energy is largely dissipated in the material underneath the two surfaces sliding against each other. This subsurface material is thereby exposed to extreme amounts of shear deformation and often forms layered subsurface microstructures with reduced grain size. Herein, the elementary mechanisms for the formation of subsurface microstructures are elucidated by systematic model experiments and discrete dislocation dynamics simulations in dry frictional contacts. The simulations show how pre‐existing dislocations transform into prismatic dislocation structures under tribological loading. The stress field under a moving spherical contact and the crystallographic orientation are crucial for the formation of these prismatic structures. Experimentally, a localized dislocation structure at a depth of ≈100–150 nm is found already after the first loading pass. This dislocation structure is shown to be connected to the inhomogeneous stress field under the moving contact. The subsequent microstructural transformations and the mechanical properties of the surface layer are determined by this structure. These results hold promise at guiding material selection and alloy development for tribological loading, yielding materials tailored for specific tribological scenarios.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号