首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2154篇
  免费   209篇
  国内免费   4篇
电工技术   41篇
化学工业   683篇
金属工艺   71篇
机械仪表   128篇
建筑科学   14篇
能源动力   95篇
轻工业   125篇
水利工程   6篇
无线电   414篇
一般工业技术   512篇
冶金工业   65篇
原子能技术   45篇
自动化技术   168篇
  2024年   4篇
  2023年   38篇
  2022年   62篇
  2021年   79篇
  2020年   61篇
  2019年   77篇
  2018年   77篇
  2017年   80篇
  2016年   101篇
  2015年   73篇
  2014年   107篇
  2013年   168篇
  2012年   139篇
  2011年   184篇
  2010年   111篇
  2009年   136篇
  2008年   126篇
  2007年   95篇
  2006年   102篇
  2005年   59篇
  2004年   59篇
  2003年   72篇
  2002年   64篇
  2001年   43篇
  2000年   43篇
  1999年   34篇
  1998年   40篇
  1997年   26篇
  1996年   21篇
  1995年   19篇
  1994年   11篇
  1993年   12篇
  1992年   5篇
  1991年   10篇
  1990年   5篇
  1989年   9篇
  1988年   3篇
  1987年   1篇
  1986年   2篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   1篇
  1980年   1篇
排序方式: 共有2367条查询结果,搜索用时 15 毫秒
61.
Tailoring the surface of the dielectric layer is of critical importance to form a good interface with the following channel layer for organic thin film transistors (OTFTs). Here, a simple surface treatment method is applied onto an ultrathin (<15 nm) organosilicon‐based dielectric layer via the initiated chemical vapor deposition (iCVD) to make it compatible with organic semiconductors without degrading its insulating property. A molecular‐thin oxide capping layer is formed on a 15 nm thick poly(1,3,5‐trimetyl‐1,3,5‐trivinyl cyclotrisiloxane) (pV3D3) by a brief oxygen plasma treatment. The capping layer greatly enhances the thermal stability of the dielectrics, without degrading the original mechanical flexibility and insulating performance of the dielectrics. Moreover, the surface silanol functionalities formed by the plasma treatment can also be utilized for the surface modification with silane compounds. The surface‐modified dielectrics are applied to fabricate low‐voltage operating (<5 V) pentacene‐based OTFTs. The highest field‐effect mobility of the device with the surface‐treated 15 nm thick pV3D3 is 0.59 cm2 V?1 s?1, which is improved up to two times compared to the TFT with the pristine pV3D3. It is believed that the simple surface treatment method can widely extend the applicability of the highly robust, ultrathin, and flexible pV3D3 gate dielectrics to design the surface of the dielectrics to match well various kinds of organic semiconductors.  相似文献   
62.
63.
Osteoarthritis (OA) has generally been introduced as a degenerative disease; however, it has recently been understood as a low-grade chronic inflammatory process that could promote symptoms and accelerate the progression of OA. Current treatment strategies, including corticosteroid injections, have no impact on the OA disease progression. Mesenchymal stem cells (MSCs) based therapy seem to be in the spotlight as a disease-modifying treatment because this strategy provides enlarged anti-inflammatory and chondroprotective effects. Currently, bone marrow, adipose derived, synovium-derived, and Wharton’s jelly-derived MSCs are the most widely used types of MSCs in the cartilage engineering. MSCs exert immunomodulatory, immunosuppressive, antiapoptotic, and chondrogenic effects mainly by paracrine effect. Because MSCs disappear from the tissue quickly after administration, recently, MSCs-derived exosomes received the focus for the next-generation treatment strategy for OA. MSCs-derived exosomes contain a variety of miRNAs. Exosomal miRNAs have a critical role in cartilage regeneration by immunomodulatory function such as promoting chondrocyte proliferation, matrix secretion, and subsiding inflammation. In the future, a personalized exosome can be packaged with ideal miRNA and proteins for chondrogenesis by enriching techniques. In addition, the target specific exosomes could be a gamechanger for OA. However, we should consider the off-target side effects due to multiple gene targets of miRNA.  相似文献   
64.
Lysophosphatidylserine (LysoPS) is an amphipathic lysophospholipid that mediates a broad spectrum of inflammatory responses through a poorly characterized mechanism. Because LysoPS levels can rise in a variety of pathological conditions, we sought to investigate LysoPS’s potential role in airway epithelial cells that actively participate in lung homeostasis. Here, we report a previously unappreciated function of LysoPS in production of a mucin component, MUC5AC, in the airway epithelial cells. LysoPS stimulated lung epithelial cells to produce MUC5AC via signaling pathways involving TACE, EGFR, and ERK. Specifically, LysoPS- dependent biphasic activation of ERK resulted in TGF-α secretion and strong EGFR phosphorylation leading to MUC5AC production. Collectively, LysoPS induces the expression of MUC5AC via a feedback loop composed of proligand synthesis and its proteolysis by TACE and following autocrine EGFR activation. To our surprise, we were not able to find a role of GPCRs and TLR2, known LyoPS receptors in LysoPS-induced MUC5AC production in airway epithelial cells, suggesting a potential receptor-independent action of LysoPS during inflammation. This study provides new insight into the potential function and mechanism of LysoPS as an emerging lipid mediator in airway inflammation.  相似文献   
65.
Fermented soybean foods contain nutritional components including easily digestible peptides, cholesterol‐free oils, minerals, and vitamins. Various fermented soybean foods have been developed and are consumed as flavoring condiments in Asian regions. While the quality of fermented soybean foods is largely affected by microorganisms that participate in the fermentation process, our knowledge about the microorganisms in soybean pastes manufactured in Northeast China is limited. The current study used a culture‐independent barcoded pyrosequencing method targeting hypervariable V1/V2 regions of the 16S rRNA gene to evaluate Korean doenjang and soybean pastes prepared by the Hun Chinese (SPHC) and Korean minority (SPKM) populations in Northeast China. In total, 63399 high‐quality sequences were derived from 16 soybean paste samples collected in Northeast China. Each bacterial species‐level taxon of SPHC, SPKM, and Korean doenjang was clustered separately. Each paste contained representative bacterial species that could be distinguished from each other: Bacillus subtilis in SPKM, Tetragenococcus halophilus in SPHC, and Enterococcus durans in Korean doenjang. This is the 1st massive sequencing‐based study analyzing microbial communities in soybean pastes manufactured in Northeast China, compared to Korean doenjang. Our results clearly showed that each soybean paste contained unique microbial communities that varied depending on the manufacturing process and location.  相似文献   
66.
The effect of coal size (0.73–1.03 mm), excess air ratio (1.0–1.4), operating bed temperature (750–900‡C), coal feeding rate (1–3 kg/h), and coal recycle rate (20–40 kg/h) on combustion efficiency, temperature profiles along the bed height and flue gas composition have been determined in a bubbling and circulating fluidized bed combustor (7.8 cm-ID x 2.6 m-high). Combustion efficiency increases with increasing excess air ratio and operating bed temperature and it decreases with increasing particle size in the bubbling and circulating fluidzing beds. In general, temperature profiles and combustion efficiency are more uniform and higher in a circulating bed than those in bubbling bed. Combustion efficiency also increases with increasing recycle rate of unburned coal in the circulating bed. The ratio of CO/CO2 of flue gas decreases with increasing bed temperature and excess air ratio, whereas the ratio of O2(CO + CO2) decreases with bed temperature in both bubbling and circulating fluidized beds.  相似文献   
67.
We produced hierarchically branched Fe2O3 nanorods on a Sb:SnO2 transparent conducting oxide (TCO) nanobelt structure as photoanodes for photoelectrochemical water splitting. Single-crystalline SnO2 nanobelts (NBs) surrounded by Fe2O3 nanorods (NRs) were synthesized by thermal evaporation, then underwent chemical bath deposition and annealing. When Fe2O3 was crystallized by annealing, Sn was diffused from SnO2 NBs and incorporated to Fe2O3 NRs, which was confirmed through Energy dispersive spectroscopy. Unlike previous high temperature sintering (∼800 °C), Sn doped hematite NRs were obtained at a low temperature (∼650 °C). This occurred since SnO2 NBs directly connected to Fe2O3 NRs are an abundant source of Sn dopant. The 3D hematite NRs on SnO2 NBs annealed at 650 °C produce a photocurrent density of 0.88 mA/cm2 at 1.23 V vs. RHE, which is 3 times higher than that of hematite NRs on a fluorine doped tin oxide (FTO) glass substrate annealed at the same temperature. The enhanced photocurrent is attributed to the improved electrical conductivity of Fe2O3 NRs by Sn doping, the efficient electron transport pathway by TCO nanowire and the increased surface area by hierarchically branched structure.  相似文献   
68.
This study investigated the effect of H2S concentration (5, 10 and 50 ppm) on the degradation and performance of Ni-YSZ anode supported solid oxide fuel cells. When supplied with hydrogen fuel containing H2S, the cell voltage dropped rapidly, and with increasing H2S concentration, voltage drop % increased (due to higher sulfur coverage on the Ni surface) and saturated more rapidly. A high concentration (50 ppm) of H2S led to an additional, slow rate voltage loss. In all cases, cell performance did not completely recover even after being supplied with H2S-free hydrogen fuel, because of the incomplete desorption of sulfur from the Ni surface. After the performance tests, nickel sulfides were detected on the Ni surface by Raman spectra, which were produced by the reaction of the remaining adsorbed sulfur with Ni during the cooling process. This indicates that the formation of nickel sulfides was not responsible for the secondary voltage drop. SEM/EDS analyses combined with FIB revealed that the reason for the additional 2nd drop was Ni oxidation; at a high sulfur coverage ratio (50 ppm), the outer layer of the Ni particle was oxidized by oxygen ions transported from the electrolyte. This indicates that H2S concentration as well as current density is a critical factor for Ni oxidation, and gives rise to the second voltage drop (irreversible cell degradation). The present work showed that the degradation behavior and phenomenon can differ significantly depending on the concentration of H2S, i.e., permanent changes may or may not occur on the anode (such as Ni oxidation) depending upon H2S concentration.  相似文献   
69.
The present work is to improve our understanding and analysis of direct contact condensation on the gravity injection of CMTs and to measure the heat transfer coefficients around steam bubbles using the holographic interferometer and high speed camera. The condensation regime map associated with the downward injection of steam into water through the steam pipe is investigated to understand the mechanism of the direct contact condensation. The present map shows that the boundary of chugging and subsonic jetting with the larger diameter pipe is shifted to the larger steam mass flux. Steam cavity mode, not found in the literature, and the unique mode of downward injection for the present geometry, is observed at the low subcooled water temperature. With the holographic interferometry and the high speed camera, the heat transfer mechanism for the direct contact condensation in CMTs is understood and the heat transfer coefficients are measured.  相似文献   
70.
Diabetes-related neuropathy is a debilitating condition that may be averted if it can be detected early. One possible way this can be achieved at low cost is to utilise peptides to detect C-peptide, a biomarker of diabetic neuropathy. This depends on peptide-peptide co-assembly, which is currently in a nascent stage of intense study. Instead, we propose a bead-based triple-overlay combinatorial strategy that can preserve inter-residue information during the screening process for a suitable complementary peptide to co-assemble with C-peptide. The screening process commenced with a pentapeptide general library, which revealed histidine to be an essential residue. Further screening with seven tetrapeptide focused libraries led to a table of self-consistent peptide sequences that included tryptophan and lysine at high frequencies. Three complementary nonapeptides (9mer com-peptides), wpkkhfwgq (Trp-D), kwkkhfwgq (Lys-D), and KWKKHFWGQ (Lys-L) (as a negative control) were picked from this table for co-assembly studies with C-peptide. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) and circular dichroism (CD) spectroscopies were utilized to study inter-peptide interactions and changes in secondary structures respectively. ATR-FTIR studies showed that there is indeed inter-peptide interaction between C-peptide and the tryptophan residues of the 9mer com-peptides. CD studies of unaggregated and colloidal C-peptide with the 9mer com-peptides suggest that the extent of co-assembly of C-peptide with Trp-D is greatest, followed by Lys-D and Lys-L. These results are promising and indicate that the presented strategy is viable for designing and evaluating longer complementary peptides, as well as complementary peptides for co-assembly with other polypeptides of interest and importance. We discuss the possibility of designing complementary peptides to inhibit toxic amyloidosis with this approach.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号