首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   232篇
  免费   5篇
电工技术   1篇
化学工业   41篇
机械仪表   4篇
建筑科学   8篇
能源动力   6篇
轻工业   13篇
水利工程   1篇
无线电   17篇
一般工业技术   32篇
冶金工业   79篇
原子能技术   1篇
自动化技术   34篇
  2022年   3篇
  2021年   5篇
  2020年   5篇
  2019年   2篇
  2018年   6篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   5篇
  2013年   9篇
  2012年   6篇
  2011年   6篇
  2010年   10篇
  2009年   3篇
  2008年   7篇
  2007年   15篇
  2006年   6篇
  2005年   11篇
  2004年   6篇
  2003年   7篇
  2002年   8篇
  2001年   1篇
  1999年   3篇
  1998年   20篇
  1997年   11篇
  1996年   9篇
  1995年   7篇
  1994年   5篇
  1993年   6篇
  1992年   4篇
  1991年   3篇
  1990年   9篇
  1989年   8篇
  1988年   2篇
  1987年   3篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1978年   2篇
  1977年   2篇
  1976年   3篇
  1970年   1篇
  1967年   2篇
  1966年   2篇
  1962年   1篇
  1960年   1篇
  1955年   1篇
  1930年   1篇
排序方式: 共有237条查询结果,搜索用时 15 毫秒
231.
The application of a magnetic-field-fluctuation thermometer (MFFT) is described for practical thermometry in the low-temperature range. The MFFT inductively measures the magnetic noise generated by Johnson noise currents in a metallic temperature sensor. The temperature of the sensor is deduced from its thermal magnetic noise spectrum by applying the Nyquist theorem, making the thermometer in principle linear over a wide range of temperatures. In this setup, a niobium-based dc SQUID gradiometer detects the magnetic field fluctuations. The gradiometer design optimizes the inductive coupling to the metallic temperature sensor, yet equally ensures sufficient insensitivity to external magnetic interference. In order to obtain a highly sensitive and fast thermometer, the SQUID chip is placed directly onto the surface of the temperature sensor. The compact setup of the gradiometer/temperature sensor unit ensures good conditions for thermal equilibration of the sensor with the temperature to be measured, a factor that becomes increasingly important in the temperature range below 1 K. The first direct comparison measurements of the MFFT with a high-accuracy realization of the Provisional Low Temperature Scale of 2000 (PLTS-2000) are presented. Special emphasis is given to the investigation of the linearity, speed, and accuracy of the MFFT.  相似文献   
232.
The use of alginate as a coating material for packaging applications is currently limited due to its difficult processability and high moisture sensitivity. Therefore, this study addresses the crosslinking and scale‐up to a continuous application. Three different crosslinking agents were applied: CaCl2 with ethylene diamine tetraacetic acid and two low soluble salts (CaHPO4 and CaCO3). Those were incorporated by internal setting in an alginate matrix with varying Ca2+ concentration ( ) and ratio. With the addition of Ca2+, the tensile strength and elongation at break of the cast alginate films increased. This was optimal for a of 0.010–0.015 g (g alginate)?1 dependent on the crosslinking agent. The decrease in water vapor and oxygen permeability due to crosslinking was independent of the crosslinking agent. However, the optimal aiming to decrease permeability was different for the crosslinking agents: CaHPO4 showed best results at a of 0.010 g (g alginate)?1, CaCl2 at 0.012 g (g alginate)?1, and CaCO3 at 0.027 g (g alginate)?1. Upon all analyzed properties CaHPO4 was the most promising crosslinking agent for alginate. Moreover, selected alginate formulations were successfully processed in a continuous lacquering plant. The produced two‐layer systems have very low oxygen permeabilities which can be further reduced by crosslinking. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45754.  相似文献   
233.
A 16-channel microfluidic chip with an integrated contact conductivity sensor array is presented. The microfluidic network consisted of 16 separation channels that were hot-embossed into polycarbonate (PC) using a high-precision micromilled metal master. All channels were 40 microm deep and 60 microm wide with an effective separation length of 40 mm. A gold (Au) sensor array was lithographically patterned onto a PC cover plate and assembled to the fluidic chip via thermal bonding in such a way that a pair of Au microelectrodes (60 microm wide with a 5 microm spacing) was incorporated into each of the 16 channels and served as independent contact conductivity detectors. The spacing between the corresponding fluidic reservoirs for each separation channel was set to 9 mm, which allowed for loading samples and buffers to all 40 reservoirs situated on the microchip in only five pipetting steps using an 8-channel pipettor. A printed circuit board (PCB) with platinum (Pt) wires was used to distribute the electrophoresis high-voltage to all reservoirs situated on the fluidic chip. Another PCB was used for collecting the conductivity signals from the patterned Au microelectrodes. The device performance was evaluated using microchip capillary zone electrophoresis (mu-CZE) of amino acid, peptide, and protein mixtures as well as oligonucleotides that were separated via microchip capillary electrochromatography (mu-CEC). The separations were performed with an electric field (E) of 90 V/cm and were completed in less than 4 min in all cases. The conductivity detection was carried out using a bipolar pulse voltage waveform with a pulse amplitude of +/-0.6 V and a frequency of 6.0 kHz. The conductivity sensor array concentration limit of detection (SNR = 3) was determined to be 7.1 microM for alanine. The separation efficiency was found to be 6.4 x 10(4), 2.0 x 10(3), 4.8 x 10(3), and 3.4 x 10(2) plates for the mu-CEC of the oligonucleotides and mu-CZE of the amino acids, peptides, and proteins, respectively, with an average channel-to-channel migration time reproducibility of 2.8%. The average resolution obtained for mu-CEC of the oligonucleotides and mu-CZE of the amino acids, peptides, and proteins was 4.6, 1.0, 0.9, and 1.0, respectively. To the best of our knowledge, this report is the first to describe a multichannel microchip electrophoresis device with integrated contact conductivity sensor array.  相似文献   
234.
A microfluidic chip with an integrated planar waveguide was fabricated in poly(methyl methacrylate), PMMA, using a single-step, double-sided hot-embossing approach. The waveguide was embedded in air on three sides, the solution being interrogated on the fourth. DNA probes were covalently attached to the waveguide surface by plasma activating the PMMA and the use of carbodiimide coupling chemistry. Successful hybridization events were read using evanescent excitation monitored by an imaging microscope, which offered high spatial resolution (2 microm) and a large field-of-view (20 mm diameter field-of-view), providing imaging of the entire array without scanning. The application of the microfluidic/waveguide assembly was demonstrated by detecting low abundant point mutations; insertion C mutations in BRCA1 genes associated with breast cancer were analyzed using a universal array coupled to an allele-specific ligation assay. DNA probes consisting of amine-terminated oligonucleotides were printed inside the microfluidic channel using a noncontact microspotter. Mutant and wild-type genomic DNAs of BRCA1 were PCR (polymerase chain reaction) amplified, with the amplicons subjected to ligation detection reactions (LDRs). LDR solutions were allowed to flow over the microarray positioned on the polymer waveguide with successful ligation events discerned through fluorescence signatures present at certain locations of the array. The microfluidic/waveguide assembly could detect polymorphisms present at <1% of the total DNA content.  相似文献   
235.
Municipal sewage sludge (MSS) is formed during wastewater treatment and its processing and disposal represent one of the most environmentally challenging aspects of the wastewater treating process. One disposal option currently being considered is a process involving heat treatment (to render the sludge biologically inactive) followed by dewatering, drying, pulverizing, and combustion. This research focuses on fine particle emissions from the combustion of dried, treated, MSS, cofired with either natural gas or pulverized Ohio bituminous coal as a supplemental fuel. These fuels were burned at 13 kW in a downflow laboratory combustor designed to replicate time/temperature histories and particle concentrations typical of practical combustion units yet also sufficiently well defined aerodynamically to allow elucidation of mechanisms. Size-segregated particle size distributions were obtained by isokinetic sampling followed by dilution/quenching and passage into a Berner Low-Pressure Impactor. Major and trace elements were analyzed by flame and graphite furnace atomic absorption spectroscopy. Four particle size regions were identified: furnace vapor-phase material that formed ultrafine particles either in or just before the sampling probe, submicron-sized particles formed during the combustion process, micron-sized fine particles, and larger supermicron sized bulk fly ash particles. The fuel mix appears to influence trace metal partitioning routes and the composition of fine particulate matter in the exhaust. Cofiring of MSS with coal increases the ultrafine/submicron particle emission compared to firing coal alone. This increase in ultrafine/submicron particles is most likely due to an interaction between species derived from MSS (possibly alkali metals) and those from coal (possibly sulfur and/or chlorine). Vapor-to-solid phase partitioning of arsenic and selenium is controlled by surface reaction with active surface sites during MSS combustion with either gas or coal. Co-combustion of MSS with the Ohio bituminous coal allows the arsenic and selenium to be reactively scavenged by calcium, thus changing the speciation of the trace metal emitted. Ohio bituminous coal alone contained insufficient calcium to accomplish this same scavenging effect.  相似文献   
236.
Chalcopyrite based photovoltaic materials Cu(InxGa1 − x)(SySe1 − y)2 (CIGSSe) are substituted in the cation and anion lattice to adopt the semiconductor bandgap to the terrestrial solar spectrum. In-situ X-ray diffraction (XRD) investigations on the crystallisation of thin film absorber materials Cu(In,Ga)(S,Se)2 while annealing stacked elemental layers (SEL) show phase transitions proceeding during the chalcopyrite synthesis.Thin layers of metals with elemental ratio Cu:In:Ga = 3:2:1 are deposited onto Mo-coated polyimide foil by DC-magnetron sputtering. The metal precursor is covered with S and subsequently Se by thermal evaporation of the elements in chalcogen excess (S + Se) / (Cu + In + Ga) = 2.3. Investigated chalcogen ratios reach from pure Se to pure S. Crystalline phases formed during the annealing of SEL are qualitatively determined. The results are compared to conclusions drawn from previous experiments on Ga-free CuIn(S,Se)2 absorbers. The presence of Ga and S influences significantly the time-scale and the temperatures of phase transitions, i.e. the sulfoselenisation of precursor phases Cu16(In,Ga)9 and Cu9(Ga,In)4 proceeds faster with increasing S and is shifted to higher temperatures as compared to Ga-free Cu11In9/Cu16In9.  相似文献   
237.
Localization of charge carriers in crystalline solids has been the subject of numerous investigations over more than half a century. Materials that show a metal-insulator transition without a structural change are therefore of interest. Mechanisms leading to metal-insulator transition include electron correlation (Mott transition) or disorder (Anderson localization), but a clear distinction is difficult. Here we report on a metal-insulator transition on increasing annealing temperature for a group of crystalline phase-change materials, where the metal-insulator transition is due to strong disorder usually associated only with amorphous solids. With pronounced disorder but weak electron correlation, these phase-change materials form an unparalleled quantum state of matter. Their universal electronic behaviour seems to be at the origin of the remarkable reproducibility of the resistance switching that is crucial to their applications in non-volatile-memory devices. Controlling the degree of disorder in crystalline phase-change materials might enable multilevel resistance states in upcoming storage devices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号