Cluster computers represent a cost-effective alternative solution to supercomputers. In these systems, it is common to constrain the memory address space of a given processor to the local motherboard. Constraining the system in this way is much cheaper than using a full-fledged shared memory implementation among motherboards. However, memory usage among motherboards can be unfairly balanced. 相似文献
Among the different methods of strengthening RC columns, steel caging is one of the most extensively used, for square or rectangular cross-section columns. Few studies have been carried out on steel caging and most of these have focused on axially loaded strengthened columns, without taking the effects of bending moments into account. This paper presents the results of a series of experimental tests on full-scale specimens strengthened with steel caging including simulation of the beam-column joint under combined bending and axial loads. Capitals were applied to all the specimens to connect the caging with the beam-column joint either by chemical anchors or steel bars to improve the transmission of forces. In all the specimens tested it was observed that steel caging increases both the ultimate load and ductility of the strengthened columns. The specimens fitted with steel bars reach higher ductility and strength than those with chemical anchors. The laboratory results were compared with three design proposals and the degree of fit with each one was analysed. 相似文献
Based on research carried out at 67 tailings dams in Spain: (1) tailings dams contain alternating sedimentary layers with contractive and dilative geomechanical behaviours; (2) tailings saturate quickly but drain more than 10 times slower due to the high-suction capacity of the porous sediments (2–300 MPa); and (3) over the long-term, a stationary flow regime is attained within a tailings basin. Four temporal and spatial conditions must all be present for a tailing dams flow failure to occur: (1) the tailings must experience contractive behaviour; (2) the tailings must be fully saturated; (3) the effective stress due to static or dynamic load must approach zero; and (4) the shear stress must exceed the tailings residual shear stress. Our results also indicate that the degree of saturation (Sr) is the most influential factor controlling dam stability. The pore-pressure coefficient controls geotechnical stability: when it exceeds 0.5 (Sr = 0.7), the safety factor decreases dramatically. Therefore, controlling the degree of tailings saturation is instrumental to preventing dam failures, and can be achieved using a double drainage system, one for the unconsolidated foundation materials and another for the overlying tailings.
In meta-analysis, the usual way of assessing whether a set of single studies is homogeneous is by means of the Q test. However, the Q test only informs meta-analysts about the presence versus the absence of heterogeneity, but it does not report on the extent of such heterogeneity. Recently, the I2 index has been proposed to quantify the degree of heterogeneity in a meta-analysis. In this article, the performances of the Q test and the confidence interval around the I2 index are compared by means of a Monte Carlo simulation. The results show the utility of the I2 index as a complement to the Q test, although it has the same problems of power with a small number of studies. (PsycINFO Database Record (c) 2010 APA, all rights reserved) 相似文献
The preparation of large quantities of heterogeneous materials containing non-agglomerated and monodispersed nanoparticles is becoming one of the bottlenecks that hinders the development of commercial devices. Here we describe a method to prepare monodispersed metallic (Cu, Ag, Au, Ni, Co, and Fe) nanoparticles in a silicate matrix (sepiolite) by means of a reduction process of metallic cations associated with a dehydration process of the matrix. This process is characterized by the huge amount of monodispersed metallic nanoparticles that it produces. Additionally, these nanoparticles have been revealed to be remarkably stable against oxidation because the transformed sepiolite matrix becomes a diffusion barrier for oxygen. Furthermore, the nanoparticles present suitable properties to be used for optical and magnetic applications. 相似文献
Predicting vegetation response to precipitation and temperature anomalies, particularly during droughts, is of great importance in semi-arid regions, because ecosystem and hydrologic processes depend on vegetation conditions. This article studies vegetation responses to precipitation and temperature in 10 ecological regions within the semi-arid Colorado River Basin (CRB). The Normalized Difference Vegetation Index (NDVI) from Global Inventory Modeling and Mapping Studies (GIMMS) database and the Standardized Precipitation Index (SPI) and temperature series from Parameter-Elevation Regressions on Independent Slope Models (PRISM) database were jointly evaluated for the period 1986–2006, using Multichannel Singular Spectrum Analysis (MSSA) to determine common oscillations and significant lags in vegetation response to seasonal and annual precipitation and temperature. Results show high correlations between lagged SPI series and standardized NDVI: from 1-month lag in the warm deserts (Sonora, Chihuahua and Mojave) to two months in the Temperate Sierras and Semi-Arid Highlands and three months in the Colorado and Arizona/New Mexico Plateaus and the Western Cordillera. Temperature anomalies are negatively correlated to NDVI in the lower CRB and positively correlated in the upper CRB. Notably, we see a basin-wide response to SPI anomalies, and consequently, the identified latitudinal and altitudinal lags between SPI and NDVI will allow an early, basin-wide assessment of lagged vegetation responses to precipitation along the CRB ecoregions. 相似文献