首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6145篇
  免费   399篇
  国内免费   21篇
电工技术   128篇
综合类   4篇
化学工业   1421篇
金属工艺   240篇
机械仪表   400篇
建筑科学   114篇
矿业工程   2篇
能源动力   348篇
轻工业   518篇
水利工程   23篇
石油天然气   6篇
武器工业   2篇
无线电   968篇
一般工业技术   1480篇
冶金工业   302篇
原子能技术   66篇
自动化技术   543篇
  2024年   6篇
  2023年   77篇
  2022年   104篇
  2021年   172篇
  2020年   154篇
  2019年   144篇
  2018年   198篇
  2017年   194篇
  2016年   219篇
  2015年   162篇
  2014年   272篇
  2013年   368篇
  2012年   449篇
  2011年   526篇
  2010年   368篇
  2009年   419篇
  2008年   371篇
  2007年   305篇
  2006年   234篇
  2005年   225篇
  2004年   188篇
  2003年   166篇
  2002年   169篇
  2001年   140篇
  2000年   133篇
  1999年   108篇
  1998年   143篇
  1997年   120篇
  1996年   86篇
  1995年   72篇
  1994年   46篇
  1993年   45篇
  1992年   28篇
  1991年   18篇
  1990年   20篇
  1989年   22篇
  1988年   18篇
  1987年   14篇
  1986年   11篇
  1985年   8篇
  1984年   3篇
  1983年   7篇
  1982年   7篇
  1981年   5篇
  1979年   3篇
  1977年   5篇
  1976年   6篇
  1975年   2篇
  1973年   1篇
  1967年   1篇
排序方式: 共有6565条查询结果,搜索用时 31 毫秒
951.
0.96(Na0.5K0.5)(Nb1?xSbx)‐0.04SrZrO3 ceramics with 0.0≤x≤0.06 were well sintered at 1060°C for 6 hours without a secondary phase. Orthorhombic‐tetragonal transition temperature (TO‐T) and Curie temperature (TC) decreased with the addition of Sb2O5. The decrease in TC was considerable compared to that in TO‐T, and thus the tetragonal phase zone disappeared when x exceeded 0.03. Therefore, a broad peak for orthorhombic‐pseudocubic transition as opposed to that for orthorhombic‐tetragonal transition appeared at 115°C‐78.2°C for specimens with 0.04≤x≤0.06. An orthorhombic structure was observed for specimens with x≤0.03. However, the polymorphic phase boundary structure containing orthorhombic and pseudocubic structures was formed for the specimens 0.04≤x≤0.06. Furthermore, a specimen with x=0.055 exhibited a large piezoelectric strain constant of 325 pC/N, indicating that the coexistence of orthorhombic and pseudocubic structures could improve the piezoelectric properties of (Na0.5K0.5)NbO3‐based lead‐free piezoelectric ceramics.  相似文献   
952.
The vibro-acoustic characteristics of an automotive brake drum is studied by applying a hybrid approach, which combines a numerical vibration analysis with an analytical acoustic solution. Specifically, structural vibration of a drum is investigated with the numerical finite element analysis, and vibratory displacements of the outer surface of the drum is approximated by simple mathematical expressions. Then, radiation of sound from the drum vibration is calculated using well-known theoretical solutions based on the simplified modal displacements. Finally, the calculation results are compared with those obtained by full numerical analyses. The results show that the numerical-analytical hybrid method allows relatively accurate calculation of vibro-acoustic properties of a brake drum under realistic boundary conditions.  相似文献   
953.
During design optimization, the impeller and diffuser of a mixed-flow pump are generally optimized separately. In such cases, the total head can be overdesigned. In this study, the designs of the impeller and diffuser were optimized simultaneously by using computational fluid dynamics and the Response surface method (RSM). Design variables were defined according to the vane plane development of the impeller and diffuser. Three-dimensional Reynolds-averaged Navier–Stokes equations for the shear stress transport turbulence model were discretized by finite volume approximations and solved on hexahedral grids to analyze the flow in the pump. The total head and total efficiency were selected as objective functions, with four design variables related to the impeller outlet angles and diffuser inlet angles used for optimization. The RSM was constructed based on the objective functions with design points generated from the central composite method. The hydraulic performance of the optimum model was analyzed.  相似文献   
954.
The effect of Mn was investigated in a synthesized multilayer system made up of five layers of InMnGaAs/GaAs quantum well (QW) grown on semi-insulating (100)-oriented substrates prepared by low-temperature molecular beam epitaxy. Magnetic moment measurements on a superconducting quantum interference device magnetometer revealed the presence of ferromagnetism with a Curie temperature above room temperature in a five-layer InGaMnAs/GaAs QW structure in a GaAs matrix. X-ray diffraction and secondary ion mass spectroscopy measurements powerfully confirmed the second phase founding of ferromagnetic GaMn and MnAs clusters. The ferromagnetism existing in five layers of InMnGaAs/GaAs QW is not intrinsic, but extrinsic due to the presence of Mn dopant clusters such as GaMn and MnAs clusters.  相似文献   
955.
Highly efficient bright green‐emitting Zn?Ag?In?S (ZAIS)/Zn?In?S (ZIS)/ZnS alloy core/inner‐shell/shell quantum dots (QDs) are synthesized using a multistep hot injection method with a highly concentrated zinc acetate dihydrate precursor. ZAIS/ZIS/ZnS QD growth is realized via five sequential steps: a core growth process, a two‐step alloying–shelling process, and a two‐step shelling process. To enhance the photoluminescence quantum yield (PLQY), a ZIS inner‐shell is synthesized and added with a band gap located between the ZAIS alloy‐core and ZnS shell using a strong exothermic reaction. The synthesized ZAIS/ZIS/ZnS QDs shows a high PLQY of 87% with peak wavelength of 501 nm. Tripackage white down‐converted light‐emitting diodes (DC‐LEDs) are realized using an InGaN blue (B) LED, a green (G) ZAIS/ZIS/ZS QD‐based DC‐LED, and a red (R) Zn?Cu?In?S/ZnS QD‐based DC‐LED with correlated color temperature from 2700 to 10 000 K. The red, green, and blue tripackage white DC‐LEDs exhibit high luminous efficacy of 72 lm W?1 and excellent color qualities (color rendering index (CRI, Ra) = 95 and the special CRI for red (R9) = 93) at 2700 K.  相似文献   
956.
In this work, a structurable gel‐polymer electrolyte (SGPE) with a controllable pore structure that is not destroyed after immersion in an electrolyte is produced via a simple nonsolvent induced phase separation (NIPS) method. This study investigates how the regulation of the nonsolvent content affects the evolving nanomorphology of the composite separators and overcomes the drawbacks of conventional separators, such as glass fiber (GF), which has been widely used in sodium ion batteries (SIBs), through the regulation of pore size and gel‐polymer position. The interfacial resistance is reduced through selective positioning of a poly(vinylidene fluoride‐co‐hexa fluoropropylene) (PVdF‐HFP) gel‐polymer with the aid of NIPS, which in turn enhances the compatibility between the electrolyte and electrode. In addition, the highly porous morphology of the GF/SGPE obtained via NIPS allows for the absorption of more liquid electrolyte. Thus, a greatly improved cell performance of the SIBs is observed when a tailored SGPE is incorporated into the GF separator through charge/discharge testing compared with the performance observed with pristine GF and conventional GF coated with PVdF‐HFP gel‐polymer.  相似文献   
957.
In solution‐based synthesis of colloidal nanostructures, additions of ligands, stabilizers, and redox reagents are generally required to obtain desirable structures, though ligands and stabilizers on the surface of nanostructures can substantially affect the surface‐related activity. Accordingly, an extensive rinsing process is usually required to remove residual reagents and stabilizers. This study reports a spontaneous self‐biomineralization of palladium (Pd) ions on a filamentous virus to form ligand‐free Pd nanowires under ambient conditions. No reducing reagents or additional surface stabilizers are used; the genetically modified virus alone supports the polycrystalline Pd nanowires within the nanostructure, maintaining the clean surface even without a rinsing process. The advantage of the ligand‐free Pd nanowires is found in the Suzuki‐coupling reaction, in which the nanowire catalytic activity is maintained after repeated reactions, while conventional Pd colloids undergo surface contamination by the stabilizer and lose their catalytic activity during repeated uses. The ligand‐free surface, high electronic connectivity, and structural stability of the Pd nanowires also allow high sensitivity and selectivity in hydrogen gas sensing analysis. This work emphasizes the importance of the ligand‐free surface of biotemplated nanostructures in maintaining functionalities without surface contamination.  相似文献   
958.
959.
960.
The adsorption of three estrogenic compounds (bisphenol A (BPA), 17beta-estradiol (E2), and 17alpha-ethynyl estradiol (EE2)) on several powdered activated carbons (PAC) was investigated. Without preconcentration, method detection limits (MDL) using high-performance liquid chromatography (HPLC) with fluorescence detection at an excitation wavelength of 280 nm and an emission wavelength of 310 nm were 0.88, 1.15, and 0.96 nM for BPA, E2, and EE2, respectively. Compound recoveries were >90% in raw drinking water matrices. PAC screening studies (six PAC brands) indicated all three compounds were removed by PAC, but the percentage removal ranged from 31% to >99% based upon PAC type/dosage and presence/absence of natural organic matter. The order of removal (E2>EE2>BPA) corresponded with logK(ow) values for the compounds (3.1-4.0, 3.7-3.9, 3.3, respectively). Kinetic and PAC dose-response experiments were conducted with the two best performing PACs. Increasing contact time and PAC dose improved compound removal. Freundlich isotherm parameters were fit to the experimental data. This study confirms that PAC treatment is feasible for >99% removal of three estrogenic compounds from raw drinking waters that may be at risk for containing such compounds, at least at initial concentration of 500 ng/l and higher.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号