首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   414篇
  免费   25篇
  国内免费   9篇
电工技术   7篇
综合类   7篇
化学工业   60篇
金属工艺   12篇
机械仪表   24篇
建筑科学   12篇
能源动力   21篇
轻工业   41篇
水利工程   7篇
石油天然气   4篇
无线电   30篇
一般工业技术   124篇
冶金工业   20篇
原子能技术   5篇
自动化技术   74篇
  2024年   1篇
  2023年   7篇
  2022年   18篇
  2021年   32篇
  2020年   22篇
  2019年   25篇
  2018年   29篇
  2017年   27篇
  2016年   22篇
  2015年   19篇
  2014年   21篇
  2013年   28篇
  2012年   30篇
  2011年   37篇
  2010年   35篇
  2009年   23篇
  2008年   15篇
  2007年   12篇
  2006年   5篇
  2005年   6篇
  2004年   5篇
  2003年   2篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1998年   4篇
  1997年   2篇
  1996年   1篇
  1995年   4篇
  1994年   2篇
  1993年   3篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
排序方式: 共有448条查询结果,搜索用时 15 毫秒
21.
The present research is focused on the two‐step ZnO/Zn thermochemical water splitting cycle for hydrogen production. In the present paper, the numerical modeling of the first step, which involves endothermic reduction of zinc oxide (ZnO), is carried out in a cylindrical reactor using Computational Fluid Dynamics (CFD). The parametric study shows that the fractional conversion of ZnO increases with an increase in the flow rate of ZnO, while it decreases with an increase in the ZnO particle diameter and carrier gas mass flow rate. Six different reactor configurations are also assessed comprehensively. It is observed that a cylindrical reactor with a tangential inlet at the top plane and a tangential outlet at the bottom plane has higher robustness to the variation of various operating parameters with consistently high ZnO fractional conversion. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
22.
Protection of Metals and Physical Chemistry of Surfaces - The present study examines the effect of shot peening on the wear behavior of austenitic high- manganese steels in both low and high...  相似文献   
23.
The previously developed bridging cell method for modeling coupled continuum/atomistic systems at finite temperature is used to model fatigue crack growth in single crystal nickel under two crystal orientations at different temperatures. The method is expanded to implement a temperature‐dependent embedded atom method potential for finite temperature simulations avoiding time‐scale restrictions associated with small timesteps. Results for the fatigue simulation were compared with respect to deformation behavior, stress distribution, and crack length. Results showed very different crack growth mechanisms between the two crystal orientations as well as reduced resistance to crack growth with increased temperature. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
24.
This study investigated the effect of solubility of amphiphilic compounds of acidic crude oil in water on the surface and interfacial tension (IFT) with NaCl, MgCl2, CaCl2, and Na2SO4 salts. Accordingly, distilled water, along with the salts mentioned in zero ionic strength up to 2 mol were put in contact with crude oil to become saturated with amphiphilic compounds. The effects of these compounds were investigated on the properties of contact water by pH, total organic carbon (TOC), FTIR (Fourier transform infrared spectroscopy), water-air surface tension (ST), and water-n-decane IFT tests. The results showed that some of the organic components of crude oil, especially acidic and basic compounds, are present or soluble in water, which have a significant effect on reducing the surface and IFT. The IFT reduction of water-n-decane was greater than the water-air ST system. Also, the observations showed that for both NaCl and Na2SO4 salt water, with increasing ionic strength of water, there was an optimum salinity within the range of 0.1-0.25 mol/L for both salts with the amount of surface and IFT minimized at this point. In the other two salts, this point was delayed upon elevation of ionic strength and was observed at high salinity. In this case, divalent cations reduce tension rate compared to monovalent cations. Due to solubility of acidic and basic groups in water, pH of salt water illustrates an acidic trend. Results of the FTIR test confirmed solubility of these compounds as well.  相似文献   
25.
In the current study, graphene oxide (GO) was prepared using green chemistry with modified Hummer's method without incorporating sodium nitrate (NaNO3). Solvent casting was employed to fabricate GO-doped poly(ethylene oxide) (PEO), that is, PEO/GO composites with various proportion of Na2SO4 and were then subjected to characterization via advanced spectroscopic techniques for different physicochemical aspects to estimate their potential applications as marketable products. XRD analysis explored that fabricated composites are more crystalline than neat PEO. PEO/GO/Na2SO4 composite films offered maximum crystallinity. SEM displayed the same trend. TG/DTA thermogram exposed better thermal stability than pristine polymer. FTIR studies confirmed complexation among hybrid's components. Elongation-at-break and Young's modulus displayed an enhancing behavior with an incremental loading of salt and filler. In terms of mechanical performance, composite of PEO with 0.37 wt % GO and 0.08 g salt was found to be an ideal composition during the course of study. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2020 , 137, 48376.  相似文献   
26.
研究使用不同的中间层瞬时液相连接两种异种高温合金的适用性.在1100℃、不同时间下瞬时液相连接GTD-111/IN-718体系,研究BNi-2、BNi-3和BNi-9三种类型的中间层对该体系显微组织和力学性能的影响.采用场发射扫描电子显微镜和能量色散光谱技术,研究接头区域的成分变化和显微组织.结果表明,非热凝固区Ni3...  相似文献   
27.
Artificial neural network was used to predict the synergetic effect of LIX 984N and D2EHPA on separation of iron from zinc solution. The aim was to predict iron and zinc extraction as a function of pH, temperature, and various organic compositions. Optimum number of hidden layers and nodes in each layer were determined. A multilayer network, with two hidden layers (4:9:5:1) was applied to predict zinc and iron extraction. Effect of pH, temperature, extractant composition, and interaction of them on extraction percent was also investigated using 3D plots. The modeling results showed that there is an excellent agreement between the experimental data and the predicted values.  相似文献   
28.
Information regarding the propagation media is typically gathered by conducting physical experiments, measuring and processing the corresponding data to obtain channel characteristics. When this propagation media is human body, for example in case of medical implants, then this approach might not be practical. In this paper, an immersive visualization environment is presented, which is used as a scientific instrument that gives us the ability to observe RF propagation from medical implants inside a human body. This virtual environment allows for more natural interaction between experts with different backgrounds, such as engineering and medical sciences. Here, we show how this platform has been used to determine channel models for medical implant communication systems.  相似文献   
29.
Quality control charts have proven to be very effective in detecting out‐of‐control states. When a signal is detected a search begins to identify and eliminate the source(s) of the signal. A critical issue that keeps the mind of the process engineer busy at this point is determining the time when the process first changed. Knowing when the process first changed can assist process engineers to focus efforts effectively on eliminating the source(s) of the signal. The time when a change in the process takes place is referred to as the change point. This paper provides an estimator for a period of time in which a step change in the process non‐conformity proportion in high‐yield processes occurs. In such processes, the number of items until the occurrence of the first non‐conforming item can be modeled by a geometric distribution. The performance of the proposed model is investigated through several numerical examples. The results indicate that the proposed estimator provides a reasonable estimate for the period when the step change occurred at the process non‐conformity level. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号