A new model for the flexural vibration of an atomic force microscope cantilever is proposed, and a closed-form expression is derived. The effects of angle, damping and tip moment of inertia on the resonant frequency were analysed. Because the tip is not exactly located at one end of the cantilever, the cantilever is modelled as two beams. The results show that the frequency first increases with increase in angle and then decreases to a constant value for high values of the angle. Moreover, the damping is increased at lower contact positions. The tip moment of inertia is also sensitive to the resonant frequency at small values for the odd modes and large values for the even modes. 相似文献
One of the most important characters of blasting, a basic step of surface mining, is rock fragmentation. It directly effects on the costs of drilling and economics of the subsequent operations of loading, hauling and crushing in mines. Adaptive neuro-fuzzy inference system (ANFIS) and radial basis function (RBF) show potentials for modeling the behavior of complex nonlinear processes such as those involved in fragmentation due to blasting of rocks. In this paper we developed ANFIS and RBF methods for modeling of sizing of rock fragmentation due to bench blasting by estimation of 80% passing size (K80) of Golgohar iron ore mine of Sirjan, Iran. Comparing the results of ANFIS and RBF models shows that although the statistical parameters RBF model is acceptable but the ANFIS proposed model is superior and also simpler because the ANFIS model is constructed using only two input parameters while seven input parameters used for construction of the RBF model. 相似文献
In this paper, the glass composition of (50-x)P2O5-xB2O3-30CuO-20Li2O (x?=?0, 5, 10, 15, and 20?mol%) was prepared and the effect of P2O5 substitution by B2O3 on their structural, optical, switching, and antibacterial characteristics was studied. FT-IR spectra showed that an increase in the B2O3 content leads to gradual erosion of the phosphate characteristic bonds, and the emergence of borate-related ones by creating new linkages between phosphate chains through P–O–B bonds and formation of highly cross-linked P3-O-B4 linkages. The incorporation of boron up to 20?mol%, also leads to an overall increase in glass transition temperature together with a decrease in the molar volume which both, implied improvement of glass stability. Optical studies revealed that all glasses are almost transparent in the UV–Vis region with high band gap energy about 3.83?eV, which experiences a red-shift with increase in the B2O3 concentration to 15?mol%. By calculating the wavelength-dependent optical parameters, however, it was found that the present glass composition with highest concentration of B2O3 shows refractive index near one and very negligible extinction coefficient (and imaginary optical dielectric function) at the visible region. These results support the great potential of the mentioned glass composition as a window layer. The analysis of the high electric field measurements demonstrated a wide range reduction in switching threshold voltage as the B2O3 content increases. This hints at their potential application as electrical-induced sensors. The antibacterial activity of x?=?0 and x?=?5 glass compositions has been examined by zone of inhibition measurements and it was found that they have potential applications as antibacterial agent. 相似文献
Regarding the growth of global energy consumption and the paucity of light crude oil,extracting and using heavy and extra heavy crude oil has received much more attention,but the application of this kind ofoil is complicated due to its very high molecular weight.High viscosity and low flowability complicate the transportation of heavy and extra heavy crude oil.Accordingly,it is essential to reduce the viscosity of heavy and extra heavy crude oil through in-situ operations or immediate actions after extraction to reduce costs.Numerical simulations are influential methods,because they reduce calculation time and costs.In this study,the cracking of extra heavy crude oil using computational fluid dynamics is simulated,and a unique kinetic model is proposed based on experimental procedures to predict the behavior of extra heavy crude oil cracking reaction.Moreover,the hydrodynamics and heat transfer of the system and influence of nanocatalysts and temperature on the upgrading of crude oil are studied.The geometry of a reactor is produced using commercial software,and some experiments are performed to examine the validity and accuracy of the numerical results.The findings reveal that there is a good agreement between the numerical and experimental results.Furthermore,to investigate the main factors affecting the process,sensitivity analysis is adopted.Results show that type of catalyst and concentration of catalyst are the parameters that influence the viscosity reduction of extra heavy crude oil the most.The findings further revealed that when using a 25 nm SiO2 nanocatalyst,a maximum viscosity reduction of 98.67% is observed at 623 K.Also,a catalyst concentration of 2.28wt% is best for upgrading extra heavy crude oil.The results obtained through sensitivity analysis,simulation model,and experiments represent effectual information for the design and development of high performance upgrading processes for energy applications. 相似文献
The smart method of genetic programming (GP) is used to predict the operating pressure drop (ΔPs) and the minimum spouting velocity ums for conical spouted beds (CSBs) equipped with nonporous draft tubes. Accordingly, six dimensionless variables have been taken as model inputs, including crucial parameters associated with the bed and tube geometric and operating conditions. Two general correlations comprising almost all constitutive and operating variables have been derived for the first time by the GP approach. Both ΔPs and ums values predicted by the GP technique are in a fair agreement with the values corresponding to the experiments, with average absolute relative errors (AARE) of 18.9 and 19.9 %, respectively. The results of the proposed correlations show that the GP method is a powerful tool to make reasonable estimates. 相似文献
Objective: Indinavir (IDV), an antiretroviral protease inhibitor used in treatment of HIV infection, has limited entry into brain due to efflux by the P-glycoprotein presented in blood–brain barrier. The aim of present study was to develop lactoferrin-treated nanoemulsion containing indinavir (Lf-IDV-NEs) for delivery to brain.
Methods: Indinavir-loaded nanoemulsions (IDV-NEs) were prepared by high-speed homogenization method, and then lactoferrin was coupled to IDV-NEs by water soluble EDC method.
Results: The hydrodynamic diameters, polydispersity index, and zeta potential of IDV-NEs were 112?±?3.5?nm, 0.20?±?0.02, and ?33.2?±?2.6?mV, respectively. From in vivo studies in animal model of rats, the AUC0–4?h of brain concentration–time profile of IDV-NEs and Lf-IDV-NEs were 1.6 and 4.1 times higher than free drug, respectively. The brain uptake clearance of IDV-NEs and Lf-IDV-NEs were, interestingly, 393- and 420-times higher than the free drug.
Conclusions: It can be concluded that applying both lactoferrin-treated and non-treated nanoemulsions clearly leads to significant brain penetration enhancement of indinavir, an effect which is more pronounced in the case of Lf-IDV-NEs with the higher drug residence time in brain. 相似文献
This paper discusses the results of a research aimed at investigating the synthesis of nano-structured lead oxide through reaction of lead nitrate solution and sodium carbonate solution by the sonochemical method. At the first, lead carbonate was obtained in a synthesized solution and then, after filtration, it was calcinated at the temperature of 320 °C so that nano-structured lead oxide can be produced. The effects of different parameters on particle size and morphology of final lead oxide powder were optimized by a “one at a time” method. The prepared lead oxide powder was characterized by scanning electron microscopy (SEM), transmission electron spectroscopy (TEM) and X-ray diffraction (XRD). Under optimum conditions, uniformed and homogeneous nano-structured lead oxide powder with more spongy morphology and particle size of 20-40 nm was obtained. The synthesized lead oxide, as anode and cathode of lead-acid batteries, showed an excellent discharge capacity (140 mA h/g). 相似文献
This paper has reviewed the state-of-the-art approaches for Computer Aided Diagnosis Systems (CADS) for Alzheimer's Disease (AD) using neuroimaging. Identification of the current approaches leads to improving the efficiency of these techniques. The analysis covered 110 articles published between 2009 and January 2018. Papers were chosen according to the Newcastle-Ottawa criteria. MeSH terms were “computer aided diagnosis systems for Alzheimer's disease” and “computer aided diagnosis systems methods for diagnosis of Alzheimer's disease”. CADS algorithms have been presented with specific methods. There is no standardized approach to determine the best one. This study has tables that aimed to conclude all methods in a precise way. Among them, Statistical Parametric Mapping (SPM), Principal Component Analysis (PCA), and Support Vector Machine (SVM) were the most common, respectively. CADS for AD could become important in clinical practice in the near future. The evaluation criteria approved their efficiency as a second opinion besides the neurologist. 相似文献
A direct-type Boundary Element Method (BEM) for the analysis of simply supported and built-in plates is employed. The integral equations due to a combined biharmonic and harmonic governing equations are first established. The boundary integrals developed are then evaluated analytically. The domain integrals due to external body forces are also transformed over the boundary and subsequently evaluated analytically. Thus, it needs only the boundary to be discretized. Without loss of generality, the exact expression for the integrals would enhance the solution accuracy of the BEM. This is due to the fact that at locations where the fundamental solutions approach their singular points the value determined by numerical quadrature may be inconsistent and inaccurate. Also, another major advantage of the exact expressions for integrations is the insensitivity to the geometrical location of the source point on the boundary. The distribution of boundary quantities is approximated either over linear or quadratic boundary elements. General type of plate bending problems, with plates of different geometrical shapes supported simply or fixed can be handled. Loading may be applied point concentrated, uniformly distributed within the domain or over the boundary. Also, hydrostatic pressure can be applied. The results obtained by BEM in comparison with those obtained by analytical or other approximate solutions are found to be very accurate and the solution method is efficient. 相似文献