Oxide‐based metal–insulator–metal structures are of special interest for future resistive random‐access memories. In such cells, redox processes on the nanoscale occur during resistive switching, which are initiated by the reversible movement of native donors, such as oxygen vacancies. The formation of these filaments is mainly attributed to an enhanced oxygen diffusion due to Joule heating in an electric field or due to electrical breakdown. Here, the development of a dendrite‐like structure, which is induced by an avalanche discharge between the top electrode and the Ta2O5‐x layer, is presented, which occurs instead of a local breakdown between top and bottom electrode. The dendrite‐like structure evolves primarily at structures with a pronounced interface adsorbate layer. Furthermore, local conductive atomic force microscopy reveals that the entire dendrite region becomes conductive. Via spectromicroscopy it is demonstrated that the subsequent switching is caused by a valence change between Ta4+ and Ta5+, which takes place over the entire former Pt/Ta2O5‐x interface of the dendrite‐like structure. 相似文献
A new stream of research indicates that framing effects are based on emotional as well as cognitive processes. However, it is not entirely clear whether emotions mediate framing effects and what the moderators of emotional mediation processes are. To address these questions, we conducted an experiment in which the framing of responsibility for a social problem was manipulated (ambivalent vs. high‐responsibility frame). We find that the high‐responsibility frame increased the preference for punitive measures by increasing responsibility beliefs and eliciting anger. Furthermore, we find that trait anger moderates the framing effect on anger and that responsibility beliefs are positively associated with anger intensity. The significance of these findings for framing research and suggestions for future studies are discussed. 相似文献
Calcium cobaltite Ca3Co4−xO9+δ (CCO) is a promising p-type thermoelectric (TE) material for high-temperature applications in air. The grains of the material exhibit strong anisotropic properties, making texturing and nanostructuring mostly favored to improve thermoelectric performance. On the one hand multitude of interfaces are needed within the bulk material to create reflecting surfaces that can lower the thermal conductivity. On the other hand, low residual porosity is needed to improve the contact between grains and raise the electrical conductivity. In this study, CCO fibers with 100% flat cross sections in a stacked, compact form are electrospun. Then the grains within the nanoribbons in the plane of the fibers are grown. Finally, the nanoribbons are electrospun into a textured ceramic that features simultaneously a high electrical conductivity of 177 S cm−1 and an immensely enhanced Seebeck coefficient of 200 µV K−1 at 1073 K are assembled. The power factor of 4.68 µW cm−1 K−2 at 1073 K in air surpasses all previous CCO TE performances of nanofiber ceramics by a factor of two. Given the relatively high power factor combined with low thermal conductivity, a relatively large figure-of-merit of 0.3 at 873 K in the air for the textured nanoribbon ceramic is obtained. 相似文献
Bioanalytical THz sensing techniques have proven to be an interesting and viable tool for the label-free detection and analysis of biomolecules. However, a major challenge for THz bioanalytics is to perform investigations in the native aqueous environments of the analytes. This review recapitulates the status and future requirements for establishing THz biosensing as a complementary toolbox in the repertoire of standard bioanalytic methods. The potential use in medical research and clinical diagnosis is discussed. Under these considerations, this article presents a comprehensive categorization of biochemically relevant analytes that have been investigated by THz sensing techniques in aqueous media. The detectable concentration levels of ions, carbohydrates, (poly-)nucleotides, active agents, proteins and different biomacromolecules from THz experiments are compared to characteristic physiological concentrations and lower detection limits of state-of-the-art bioanalytical methods. Finally, recent experimental developments and achievements are discussed, which potentially pave the way for THz analysis of biomolecules under clinically relevant conditions.
High molecular weight Maillard reaction products (melanoidins) are described to possess metal-chelating properties. Whereas
in food systems, this ability contributes to antioxidant properties, the consequences on biological systems are not quite
clear. The study was aimed to evaluate the implication of metal complexation by melanoidins on DNA damage. Melanoidins prepared
with d-glucose and different l-amino acids under water-free reaction conditions were charged with cupric ions. The effect on isolated DNA was investigated
by the PM2 assay and on cellular systems in the human colon carcinoma cell line HCT-116 by alkaline unwinding. Independent
of the amino acid composition, pure melanoidins (MW >14 kDa) did not cause significant DNA damage. By charging melanoidins
with Cu2+ ions, a considerable DNA strand breaking activity was detectable, which was again amplified in an oxidative milieu (addition
of hydrogen peroxide). Since Cu2+ normally does not provoke the formation of reactive oxygen species (ROS) via Fenton-type reaction, the results obtained have
to be attributed to reducing properties of melanoidins. Thus, in melanoidin–copper complexes redox cycling may take place
leading to Cu+ which subsequently undergoes Fenton-type and Haber–Weiss reactions. As a consequence, ROS are formed, which may explain the
generation of DNA strand breaks. 相似文献
In a herd of 100 milking Simmental cows, data of performance and behavior parameters were collected automatically with different systems such as pedometers, an automatic milking system, and automatic weighing troughs for 1 yr. Performance measures were several milking-related parameters, live weight, as well as feed intake. Behavior-associated measures were feeding behavior (e.g. feeding duration, number of visits to the trough, and feeding pace) as well as activity such as lying duration, number of lying bouts, and overall activity. In the same time, lameness status of every cow was assessed with weekly locomotion scoring. According to the score animals were then classified lame (score 4 or 5) or nonlame (score 1, 2, or 3). From these data in total, 25 parameters summarized to daily values were evaluated for their ability to determine the lameness status of a cow. Data were analyzed with a regularized regression method called elastic net with the outcome lame or nonlame. The final model had a high prediction accuracy with an area under the curve of 0.91 [95% confidence interval (CI) = 0.88–0.94]. Specificity was 0.81 (95% CI = 0.73–0.85) and sensitivity was 0.94 (95% CI = 0.88–1.00). The most important factors associated with a cow being lame were number of meals, average feed intake per meal, and average duration of a meal. Lame cows fed in fewer and shorter meals with a decreased intake per meal. Milk yield and lying-behavior-associated parameters were relevant in the model, too, but only as parts of interaction terms demonstrating their strong dependence on other factors. A higher milk yield only resulted in higher risk of being lame if feed intake was decreased. The same accounts for lying duration: only if lying time was below the 50% quantile did an increased milk yield result in a higher risk of being lame. The association of lameness and daily lying duration was influenced by daily feeding duration and feeding duration at daytime. The results of the study give deeper insights on how the association between behavior and performance parameters and lameness is influenced by intrinsic factors in particular and that many of these have to be considered when trying to predict lameness based on such data. The findings lead to a better understanding why, for instance, lying duration or milk yield seem to be highly correlated with lameness in cows but still have not been overly useful as parameters in other lameness detection models. 相似文献
This detailed study observed the yeasts present in the ecological niche of "wine must". The dynamics and identity of non-Saccharomyces yeasts during the cold maceration and alcoholic fermentation of grape must were investigated under real production conditions in the Bordeaux region. Furthermore, we studied the impact of two oenological parameters on the development and diversity of non-Saccharomyces yeasts during cold maceration: temperature management and the timing of dried yeast addition. The non-Saccharomyces community underwent constant changes throughout cold maceration and alcoholic fermentation. The highly diverse non-Saccharomyces microflora was present at 10(4)-10(5) CFU/mL during cold maceration. The population increased to a maximum of 10(6)-10(7) CFU/mL at the beginning of alcoholic fermentation, then declined again at the end. The population at this point, evaluated at around 10(3)-10(4) CFU/mL, was shown to be dependent on the timing of yeast inoculation. The choice of temperature was the key factor for controlling the total yeast population growth, as well as the species present at the end of cold maceration. Hanseniaspora uvarum was a major species present in 2005 and 2006, while Candida zemplinina was very abundant in 2006. A total of 19 species were isolated. 相似文献
NaCl is an important multifunctional ingredient applied in dry-cured ham elaboration. However, its excessive intake has been linked to serious cardiovascular diseases causing a recent increase in the development of reduced salt products. In the present study Listeria monocytogenes and Salmonella, food-borne pathogens which can cross-contaminate post processed products, were spiked with < 100 CFU/g on slices of both standard (S) and NaCl-free processed (F) (elaborated with KCl + potassium lactate instead of NaCl) smoked dry-cured ham. Although L. monocytogenes and Salmonella counts decreased faster in S ham, pathogens were present in both types of non-pressure treated ham during the entire refrigerated storage period (112 days). Pressurisation at 600 MPa for 5 min caused the elimination of both pathogens in S ham after 14 days. In contrast, Salmonella and L. monocytogenes were present in F ham until days 28 and 56, respectively, indicating that the NaCl-free processed dry-cured ham had lower stability than standard smoked dry-cured ham. 相似文献
This study investigated the diversity of yeast species associated with rotting wood in Brazilian Amazonian rainforests. A total of 569 yeast strains were isolated from rotting wood samples collected in three Amazonian areas (Universidade Federal do Amazonas-Universidade Federal do Amazonas [UFAM], Piquiá, and Carú) in the municipality of Itacoatiara, Amazon state. The samples were cultured in yeast nitrogen base (YNB)-d -xylose, YNB-xylan, and sugarcane bagasse and corncob hemicellulosic hydrolysates (undiluted and diluted 1:2 and 1:5). Sugiyamaella was the most prevalent genus identified in this work, followed by Kazachstania. The most frequently isolated yeast species were Schwanniomyces polymorphus, Scheffersomyces amazonensis, and Wickerhamomyces sp., respectively. The alpha diversity analyses showed that the dryland forest of UFAM was the most diverse area, while the floodplain forest of Carú was the least. Additionally, the difference in diversity between UFAM and Carú was the highest among the comparisons. Thirty candidates for new yeast species were obtained, representing 36% of the species identified and totaling 101 isolates. Among them were species belonging to the clades Spathaspora, Scheffersomyces, and Sugiyamaella, which are recognized as genera with natural xylose-fermenting yeasts that are often studied for biotechnological and ecological purposes. The results of this work showed that rotting wood collected from the Amazonian rainforest is a tremendous source of diverse yeasts, including candidates for new species. 相似文献
Titanium dioxide (TiO(2)) has often served as a model substrate for experimental sorption studies of environmental contaminants. However, various forms of Ti-oxide have been used, and the different sorption properties of these materials have not been thoroughly studied. We investigated uranium sorption on some thoroughly characterized TiO(2) surfaces with particular attention to the influence of surface area, surface charge, and impurities. The sorption of U(VI) differed significantly between samples. Aggressive pretreatment of one material to remove impurities significantly altered the isoelectric point, determined by an electroacoustic method, but did not significantly impact U sorption. Differences in sorption properties between the various TiO(2) materials were related to the crystallographic form, morphology, surface area, and grain size, rather than to surface impurities or surface charge. In-situ attenuated total reflection Fourier-transform infrared (ATR FT-IR) spectroscopic studies showed that the spectra of the surface species of the TiO(2) samples are not significantly different, suggesting the formation of similar surface complexes. The data provide insights into the effect of different source materials and surface properties on radionuclide sorption. 相似文献