首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   530篇
  免费   48篇
  国内免费   1篇
电工技术   1篇
综合类   2篇
化学工业   189篇
金属工艺   7篇
机械仪表   14篇
建筑科学   58篇
矿业工程   2篇
能源动力   14篇
轻工业   73篇
石油天然气   1篇
无线电   24篇
一般工业技术   110篇
冶金工业   21篇
原子能技术   2篇
自动化技术   61篇
  2023年   10篇
  2022年   20篇
  2021年   36篇
  2020年   17篇
  2019年   14篇
  2018年   11篇
  2017年   13篇
  2016年   32篇
  2015年   28篇
  2014年   22篇
  2013年   44篇
  2012年   38篇
  2011年   26篇
  2010年   41篇
  2009年   26篇
  2008年   32篇
  2007年   38篇
  2006年   26篇
  2005年   22篇
  2004年   12篇
  2003年   12篇
  2002年   10篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1998年   7篇
  1997年   9篇
  1996年   8篇
  1995年   2篇
  1994年   1篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1990年   4篇
排序方式: 共有579条查询结果,搜索用时 46 毫秒
81.
We use low-temperature heat capacity, low-frequency Raman scattering, and THz time domain spectroscopy in order to scale the vibrational density of states and the Boson peak in SiO2-Al2O3-B2O3 Yb-laser host glasses. When substituting B2O3 for SiO2 at constant Al2O3 dopant level, we find an optimal value for the ratio of B/Al in terms of mixture stability, at which the excess in the electron donor capability of Al2O3 (relative to the SiO2 backbone) is compensated by the more acidic B2O3. At this composition, Al2O3 plays a mediating role in the structure of aluminoborosilicate glasses, facilitating dissolution of Yb2O3 and admixture of B2O3 into the SiO2 network.  相似文献   
82.
Understanding rock strength is essential when undertaking major excavation projects,as accurate assessments ensure both safe and cost-effective engineered slopes.Balancing the cost-safety trade-off becomes more imperative during the construction of critical infrastructure such as nuclear power stations,where key components are built within relatively deep excavations.Designing these engineered slopes is reliant on rock strength models,which are generally parameterised using estimates of rock properties(e.g.unconfined compressive strength,rock disturbance) measured prior to the commencement of works.However,the physical process of excavation weakens the remaining rock mass.Therefore,the model also requires an adjustment for the anticipated rock disturbance.In practice,this parameter is difficult to quantify and as a result it is often poorly constrained.This can have a significant impact on the final design and cost of excavation.We present results from passive and active seismic surveys,which image the extent and degree of disturbance within recently excavated slopes at the construction site of Hinkley Point C nuclear power station.Results from active seismic surveys indicate that the disturbance is primarily confined to 0.5 m from the excavated face.In conjunction,passive monitoring is used to detected seismic events corresponding to fracturing on the cm-scale and event locations are in agreement with 0.5 m of disturbance into the rock face.This suggests rock disturbance at this site is relatively low and occurred during and immediately after the excavation.A ratio of seismic velocities recorded before and after excavations are used to determine the disturbance parameter required for the Hoek-Brown rock failure criterion,and we assess that rock disturbance is low with the magnitude of the disturbance diminishing more quickly than expected into the excavated slope.Seismic methods provide a low-cost and quick method to assess excavation related rock mass disturbance,which can lead to cost reductions in large excavation projects.  相似文献   
83.
In this work the influence of thermal treatment conditions on crystallization of a sol-gel-derived 45S5 bioactive glass was evaluated using DSC, XRD, TEM, EDX, and X-ray nanocomputed tomography (nano-CT). Temperature and time of the thermal treatment strongly influence the composition of the crystalline phases. At the onset of the glass transition temperature (600°C), combeite crystallizes as the main phase along with a calcium silicate-phosphate phase, which decomposes into rhenanite from 2 hours of thermal treatment at this temperature. At the crystallization temperature (700°C), combeite remains as the main crystalline phase. Additionally, Na2Ca2Si2O7 crystalline phase is formed. Our results provide a basic platform for tailoring the crystalline phases by controlling the nucleation and growth of crystalline phases via thermal treatments. Different morphologies (round particles, stacked layers, toothpick-like, and long features) were discerned by TEM as a function of temperature and time of treatment. It is the first time that bioactive glass is investigated by nano-CT at laboratory scale. This novel technique enables the 3D visualization of features in the nanometer range, giving clear information about the volumetric distribution of phases in the sample.  相似文献   
84.

A cost effective and reliable technology for the fabrication of electrochemical test-cell arrays for battery materials research, based on batch-fabricated glass micro packages was developed and tested. Jet dispensing was investigated for the first time as a process for fabricating battery electrode arrays and separators and compared to micro dispense printing. The process shows the reproducibility over the whole range of investigated materials and battery cell structures that is required for battery materials research. Such setup gives rise to a significantly improved reliability and reproducibility of electrochemical experiments. Cost-effective fabrication of our test chips by batch processing allows for their single-use in electrochemical experiments, thereby preventing contamination issues due to repeated use as in conventional laboratory test cells. In addition, the integration of micro pseudo reference electrodes is demonstrated. Thus, the test cell array together with the developed electrode/electrolyte deposition technology provide a highly efficient tool for speedy combinatorial and high throughput testing of battery materials on a system level (full cell tests). Experimental results are shown for the microfabrication of lithium-ion test cells with help of several electrode and binder materials. The influence of jetting parameters on electrode lateral dimensions and thickness, reproducibility of the electrode mass as well as the use of integrated micro-reference electrodes for impedance spectroscopy and cyclic voltammetry measurements in micro cells are presented in detail.

  相似文献   
85.
Cellular membranes have long served as an inspiration for nanomaterial research. The preparation of ultrathin polydopamine (PDA) films with integrated protein pores containing phospholipids and an embedded domain of a membrane protein glycophorin A as simplified cell membrane mimics is reported. Large area, ultrathin PDA films are obtained by electropolymerization on gold surfaces with 10–18 nm thickness and dimensions of up to 2.5 cm2. The films are transferred from gold to various other substrates such as nylon mesh, silicon, or substrates containing holes in the micrometer range, and they remain intact even after transfer. The novel transfer technique gives access to freestanding PDA films that remain stable even at the air interfaces with elastic moduli of ≈6–12 GPa, which are higher than any other PDA films reported before. As the PDA film thickness is within the range of cellular membranes, monodisperse protein nanopores, so‐called “nanodiscs,” are integrated as functional entities. These nanodisc‐containing PDA films can serve as semi‐permeable films, in which the embedded pores control material transport. In the future, these simplified cell membrane mimics may offer structural investigations of the embedded membrane proteins to receive an improved understanding of protein‐mediated transport processes in cellular membranes.  相似文献   
86.
In modern electronics, it is essential to adapt band structures by adjusting energy levels and band gaps. At first sight, this “band structure engineering” seems impossible in organic semiconductors, which usually exhibit localized electronic states instead of Bloch bands. However, the strong Coulomb interaction in organic semiconductors allows for a continuous shift of the ionization energy (IE) over a wide range by mixing molecules with halogenated derivatives that exhibit different quadrupole moments. Here, this effect of energy level engineering on blends of pentacene and two fluorinated derivatives, in which the position but not the number of fluorine atoms differ, is studied. Structural investigations confirm that pentacene forms intermixed phases in blends with the fluorinated species. The investigation of electronic properties and simulations reveals a much larger shift of the ionization energy (1.5 eV) than in previous studies, allowing to test this model in a range not investigated so far, and emphasizing the role of the position of the halogen atoms. The tuning effect is preserved in electronic devices such as field‐effect transistors and significantly influences device characteristics.  相似文献   
87.
Nanometer‐thick active metasurfaces (MSs) based on phase‐change materials (PCMs) enable compact photonic components, offering adjustable functionalities for the manipulation of light, such as polarization filtering, lensing, and beam steering. Commonly, they feature multiple operation states by switching the whole PCM fully between two states of drastically different optical properties. Intermediate states of the PCM are also exploited to obtain gradual resonance shifts, which are usually uniform over the whole MS and described by effective medium response. For programmable MSs, however, the ability to selectively address and switch the PCM in individual meta‐atoms is required. Here, simultaneous control of size, position, and crystallization depth of the switched phase‐change material (PCM) volume within each meta‐atom in a proof‐of‐principle MS consisting of a PCM‐covered Al–nanorod antenna array is demonstrated. By modifying optical properties locally, amplitude and light phase can be programmed at the meta‐atom scale. As this goes beyond previous effective medium concepts, it will enable small adaptive corrections to external aberrations and fabrication errors or multiple complex functionalities programmable on the same MS.  相似文献   
88.
89.
Interrogation and control of cellular fate and function using optogenetics is providing revolutionary insights into biology. Optogenetic control of cells is achieved by coupling genetically encoded photoreceptors to cellular effectors and enables unprecedented spatiotemporal control of signaling processes. Here, a fast and reversibly switchable photoreceptor is used to tune the mechanical properties of polymer materials in a fully reversible, wavelength‐specific, and dose‐ and space‐controlled manner. By integrating engineered cyanobacterial phytochrome 1 into a poly(ethylene glycol) matrix, hydrogel materials responsive to light in the cell‐compatible red/far‐red spectrum are synthesized. These materials are applied to study in human mesenchymal stem cells how different mechanosignaling pathways respond to changing mechanical environments and to control the migration of primary immune cells in 3D. This optogenetics‐inspired matrix allows fundamental questions of how cells react to dynamic mechanical environments to be addressed. Further, remote control of such matrices can create new opportunities for tissue engineering or provide a basis for optically stimulated drug depots.  相似文献   
90.
We report the use of superresolution fluorescence microscopy for studying the nanoscale distribution of protein colocalization in living mammalian cells. Nanoscale imaging is attained both by a targeted and a stochastic fluorescence on-off switching superresolution method, namely by stimulated emission depletion (STED) and ground state depletion microscopy followed by individual molecular return (GSDIM), respectively. Analysis of protein colocalization is performed by bimolecular fluorescence complementation (BiFC). Specifically, a nonfluorescent fragment of the yellow fluorescent protein Citrine is fused to tubulin while a counterpart nonfluorescent fragment is fused to the microtubulin-associated protein MAP2 such that fluorescence is reconstituted on contact of the fragment-carrying proteins. Images with resolution down to 65 nm prove a powerful new way for studying protein colocalization in living cells at the nanoscale.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号