首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4354篇
  免费   120篇
  国内免费   13篇
电工技术   276篇
综合类   8篇
化学工业   1127篇
金属工艺   114篇
机械仪表   95篇
建筑科学   65篇
能源动力   178篇
轻工业   429篇
水利工程   15篇
石油天然气   2篇
无线电   377篇
一般工业技术   734篇
冶金工业   531篇
原子能技术   173篇
自动化技术   363篇
  2023年   19篇
  2022年   54篇
  2021年   79篇
  2020年   42篇
  2019年   54篇
  2018年   67篇
  2017年   57篇
  2016年   76篇
  2015年   51篇
  2014年   119篇
  2013年   201篇
  2012年   172篇
  2011年   239篇
  2010年   178篇
  2009年   199篇
  2008年   206篇
  2007年   201篇
  2006年   194篇
  2005年   166篇
  2004年   131篇
  2003年   151篇
  2002年   123篇
  2001年   94篇
  2000年   88篇
  1999年   85篇
  1998年   285篇
  1997年   161篇
  1996年   132篇
  1995年   84篇
  1994年   98篇
  1993年   91篇
  1992年   44篇
  1991年   48篇
  1990年   48篇
  1989年   43篇
  1988年   25篇
  1987年   36篇
  1986年   30篇
  1985年   39篇
  1984年   26篇
  1983年   36篇
  1982年   32篇
  1981年   35篇
  1980年   31篇
  1979年   28篇
  1978年   13篇
  1977年   16篇
  1976年   23篇
  1974年   6篇
  1973年   11篇
排序方式: 共有4487条查询结果,搜索用时 15 毫秒
81.
Pt(0.3)/Ni(10)/Al2O3, prepared by a sequential impregnation method, exhibited a more excellent performance in methane reforming with CO2 and O2 in terms of the catalytic activity and the temperature profile of the catalyst bed than Pt(0.3) + Ni(10)/Al2O3 prepared by a coimpregnation method, Ni(10)/Al2O3, Pt(0.3)/Al2O3, and Pt(10)/Al2O3. It is thought that this is because the surface Pt atoms on Ni catalyst can contribute to the enhancement of the catalyst reducibility.  相似文献   
82.
When reaction-bonded silicon nitride containing MgO/Y2O3 additives is sintered at three different temperatures to form sintered reaction-bonded silicon nitride (SRBSN), the thermal conductivity increases with sintering temperature. The β-Si3N4 (silicon nitride) crystals of SRBSN ceramics were synthesized and characterized to investigate the relation between the crystal structure and the lattice oxygen content. The hot-gas extraction measurement result and the crystal structure obtained using Rietveld analysis suggested that the unit cell size of the β-Si3N4 crystal increases with the decrease in the lattice oxygen content. This result is reasonable considering that the lattice oxygen with the smaller covalent radius substitutes nitrogen with the larger one in the β-Si3N4 crystals. The lattice oxygen content decreased with increasing sintering temperature which also correlated with increase in thermal conductivity. Moreover, it is noteworthy from the viewpoint that it may be possible to apply the lattice constant analysis for the nondestructive and simple measurement of the lattice oxygen content that deteriorates the thermal conductivity of the β-Si3N4 ceramics.  相似文献   
83.
This work aims to develop hydrogel films of starch and carboxymethyl cellulose (CMC) crosslinked with sodium trimetaphosphate (STMP) and to characterize some of their properties. Starch and STMP (S/T), starch and CMC (S/C), and mixed (S/T/C) films were prepared by casting. The degree of substitution, morphology, swelling degree, FTIR, mechanical properties, and sorption isotherms were studied. Reticulated samples (S/T and S/T/C) showed the same degree of substitution (0.050 ± 0.001). All films presented homogeneous morphology, but the mixed film showed greater roughness. Crosslinking increased the swelling capacity of the mixed hydrogel at pH 7, although it remained decreased concerning the S/T hydrogel. However, this property was sensitive to pH variations. The mixed film (S/T/C) showed greater mechanical resistance. The casting process was efficient to produce hydrogel films of starch/CMC crosslinked with STMP and the general results demonstrated the advantages of the mixed hydrogel.  相似文献   
84.
Atmospheric corrosion of steel proceeds under thin electrolyte film formed by rain and dew condensation followed by wet and dry cycles. It is said that rust layer formed on steel as a result of atmospheric corrosion strongly affects the corrosion behavior of steel. The effect of environmental corrosiveness on the formation process and structure of the rust layer is, however, not clear to date. In this study, in situ observation of the rusting process of a carbon steel covered with a thin film of Na2SO4 or NaCl solution was performed under a wet/dry repeating condition by X-ray diffraction spectroscopy with white X-rays obtained from synchrotron radiation. The present in situ experiments successfully detected initial process of the rust formation. In the early cycles, the rust constituents were not well crystallized yet, but the presence of Fe(OH)2 and Fe(OH)3 was confirmed. In the subsequent cycles, two different solutions resulted in difference in preferential phase of the rust constituents. α-FeOOH was preferentially formed in the case of the Na2SO4 solution film, whereas β-FeOOH appeared only under the NaCl solution film.  相似文献   
85.
Mechanical deformation of Pd40Ni40P20 was characterized in compression over a wide strain rate range (3.3×10−5 to 2×103 s−1) at room temperature. The compression sample fractured with a shear plane inclined 42 degree with respect to the loading axis, in contrast to 56 degree for the case of tension. This suggests the yielding of the material deviates from the classical von Mises yield criterion, but follows the Mohr-Coulomb yield criterion. Fracture stress as well as strain was found to decrease with increasing applied strain rate. The compressive stress (1.74 GPa) was also found to be higher than the tensile fracture stress at a quasi-static strain rate. Close examination of the stress–strain curves revealed that localized shear might have occurred at a compressive stress of about 1.4 GPa, much lower than the “apparent” yield stress of 1.74 GPa. However, the stress of 1.4 GPa for shear band initiation is almost the same as the fracture stress measured at a dynamic strain rate of 5×102 s−1. These results suggested that the fracture of a bulk metallic glass is sensitive to the applied loading rate.  相似文献   
86.
The microstructure development during plastic deformation was reviewed for iron and steel which were subjected to cold rolling or mechanical milling (MM) treatment, and the change in strengthening mechanism caused by the severe plastic deformation (SPD) was also discussed in terms of ultra grain refinement behavior. The microstructure of cold-rolled iron is characterized by a typical dislocation cell structure, where the strength can be explained by dislocation strengthening. It was confirmed that the increase in dislocation density by cold working is limited at 1016m−2, which means the maximum hardness obtained by dislocation strengthening is HV3.7 GPa. However, the iron is abnormally work-hardened over the maximum dislocation strengthening by SPD of MM because of the ultra grain refinement caused by the SPD. In addition, impurity of carbon plays an important role in such grain refinement: the carbon addition leads to the formation of nano-crystallized structure in iron.  相似文献   
87.
Amorphous Al50Ta60 alloy powders have been synthesized by mechanical alloying (MA) from elemental powders of aluminium and tantalum, and mechanical disordering (MD) from crystalline intermetallic compound powders of AlTa respectively using the rod milling technique. The mechanically alloyed and the mechanically disordered alloy powders were characterized by X-ray diffraction, scanning electron microscopy, electron probe microanalysis, transmission electron microscopy, differential thermal analysis, differential scanning calorimetry and chemical analysis. The results have shown that the crystal-to amorphous transformation in the MD process occurs through one stage, while the crystallineto-amorphous formation in the MA process occurs through three stages. At the early and intermediate stages of the MA time, heating the alloy powders to 700 K leads to the formation of an amorphous phase by a solid-state amorphizing reaction. At the final stage of the MA time, the amorphous phase is crystallized through a single sharp exothermic peak. Contrary to this, amorphous alloy powders produced by MD are crystallized through two broad exothermic peaks.  相似文献   
88.
General interest for robotic technology has been increased by the public and the media after Fukushima Daiichi Nuclear Power Plant (hereafter referred to as 1F) disaster. Especially, robots which can work under the very severe condition where personnel cannot access have demands for development. As to respond to such high demands, NEDO established ‘Disaster response unmanned systems development project’ in 2012.[1] This project is specialized in the development of various remote-controlled equipment, such as remote-controlled platform truck and remote control human interface under ‘Mobile Robot Development’. Remote-controlled platform truck is designed to safely and surely deliver robots and supplies, instead of using stairs and elevator, etc. in and out of building where it is too critical for personnel to work under. Remote control human interface for robots is designed to standardize the command and operation screen for operator, based on opinions from project members, and manned facility construction.[2] In this article, mechanical structure and development tasks for remote-controlled platform truck, and commonalization approach for operation and camera display of various remote-controlled equipment and robot for remote control human interface are stated. Background: due to hydrogen explosion triggered by The Great East Japan Earthquake on 11 March 2011, a reactor building at Fukushima Daiichi Nuclear Power Plant was severely damaged. It is required to reduce high radiation dose in the atmosphere of the reactor building to perform restoration. To pursue decontamination of the reactor building, equipment to lift and carry decontamination devices to upper floor are required.  相似文献   
89.
Mechanical strengthening of a Si cantilever by applying KOH wet etching was investigated. Two kinds of Si cantilever specimens having the different crystallographic orientations of the sidewall surfaces, i.e., Si{100} and Si{110}, were fabricated from the same SOI wafer by a Bosch process. The typical height and pitch of the scalloping formed on the sidewall were 248 and 917 nm, respectively. A 50 % KOH (40 °C) chemical wet etching was applied to increase the fracture stress of the Si cantilever. The fracture stress in the both of Si{100} and Si{110} cantilevers increased with the advance of the etching. The obtained maximum fracture stress in Si{100} and Si{110} were 4.2 and 3.7 GPa, respectively. Sidewall surface of the cantilever was analyzed to investigate the mechanical strengthening of Si cantilever by wet etching. The etched surface crystalline was analyzed by the transmission electron microscope (TEM), and confirmed that the thickness of the affected flow layer was less than 10 nm from the obtained TEM image. Then the change of the surface roughness by the KOH etching was analyzed by the atomic force microscope. The surface was smoothened with the advance of the KOH etching. The roughness value of Ra in Si{100} and Si{110} decreased to 12.1 and 37.7 nm, respectively.  相似文献   
90.
We have developed a meter-scale light emitting diode (LED)-embedded light fabric and its weaving machine for application to a light device for fabric ceilings, which have recently become desired for lightweight safe ceilings in Japan and other countries with frequent earthquakes. The LED fabric structure is 1.2-m-wide woven fabric that has 5-mm-wide LED chip-mounted printed circuit board (PCB) tapes as wefts. LEDs are mounted on the tape of PCBs with a reel-to-reel chip mounting system. Then, the LED-mounted tapes are woven with a developed automatic looming machine that aligns the weft with an accuracy of 0.9 mm, which is suitable for precise arrangement of LEDs and wiring to power supply. A 1.2 × 1.2 m LED-embedded light fabric weighing 320 g/m2 was woven. The luminance of the LED fabric is 353 lx at a distance of 1 m, which is the luminance of conventional office lighting. The temperature increase of LEDs without a rigid cooling aluminum plate is only 5.8 °C, and the LED fabric is flexible enough to sustain 1,000 bends down to a radius of 3 mm. This LED fabric and its weaving technology will lead to light devices that have lightweight, large area, and high flexibility for fabric ceilings, walls, and other large areas in homes and offices.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号