首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
化学工业   1篇
水利工程   2篇
自动化技术   11篇
  2021年   7篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
排序方式: 共有14条查询结果,搜索用时 0 毫秒
11.
In the reliability-based design optimization (RBDO), the Advanced mean value (AMV) method sometimes yields unstable results such as chaotic and periodic solutions for highly nonlinear probabilistic constraints. The chaos control (CC), modified chaos control (MCC) and adaptive chaos control (ACC) methods are more robust than the AMV but inefficient for some moderately nonlinear performance functions. In this paper, a self-adaptive modified chaos control (SMCC) method is developed based on a dynamical control factor to improve the efficiency of MCC for reliability analysis and RBDO. The self-adaptive control factor is dynamically computed based on the new and previous results. The efficiency and robustness of the proposed SMCC are compared with the AMV, CC, MCC and ACC methods using several nonlinear structural/mathematical performance functions and RBDO problems. The results illustrate that the SMCC is more efficient than CC, MCC, and ACC methods, and also more robust than AMV method for highly nonlinear problems.  相似文献   
12.

For the nonlinear dynamic analyses of complex mechanical components, it is necessary to apply efficient modeling framework to reduce computational burden. The accurate surrogate model for approximating the nonlinear responses of several failures is a vital issue to provide robust and safe design conditions in complex engineering applications. In this paper, two different Modified multi-extremum Response Surface basis Models (MRSM) are proposed for dynamic nonlinear responses of failure capacities for turbine blisk responses. The proposed MRSM is established using two regression processes including regressed the input variables by linear or exponential basis functions in first calibrating phase and regressed the second-order polynomial basis function using inputs data provided by first stage in second calibrating procedure. A sensitivity analysis using MRSM is proposed to consider the variation of input variables on the nonlinear responses. In the sensitivity analysis procedure, the effects of input variables are evaluated using the calibrating results given from the first regressed process. To evaluate the performance of the proposed MRSM, three multi-extremum failure modes including radial deformation of compressor blisk, maximum strain, and stress of compressor blade and disk are considered. the prediction of MRSM of nonlinear responses for Thermal-fluid–structure system with dynamical nonlinear finite-element analyses is compared with response surface method (RSM) and artificial neural network (ANN). The predicted results of modeling approaches showed that the sensitivity analysis based on MRSM accurately provided the effective degree for input variables. The gas temperature has the highest effects on nonlinear responses of turbine blisk which is followed by angular speed and material density. The MRSM combined with basic exponential function performs better than other models, while the MRSM coupled with linear function is more accurate than ANN and RSM. The proposed MRSM models have illustrated the accurate and efficient framework for approximating dynamic structural analysis of complex components.

  相似文献   
13.

The efficiency and robustness of reliability techniques are important in reliability-based design optimization (RBDO). Commonly, advanced mean value (AMV) is utilized in reliability loop of RBDO but unstable solutions using AMV may be obtained for highly concave performance functions. Owing to the challenges of commonly reliability methods, the conjugate gradient analysis (CGA) is proposed as a robust methodology but it shows inefficient results for convex constraints. In this research, hybrid conjugate mean value (HCMV) method is proposed using sufficient condition for the enhancement of efficiency and robustness of RBDO. The CGA and AMV are dynamically utilized for simple solution of convex/concave constraints using sufficient descent criterion in HCMV. The HCMV is used to evaluate the convergence performances and is compared with numerous existing reliability methods through three reliability problems (two concave/convex mathematical examples and one applicable structure) and four RBDO problems. From the numerical results, the HCMV exhibited the better efficiency, and robustness compared to other studied formulations in reliability and RBDO problems.

  相似文献   
14.
ABSTRACT

A novel three-component reaction between isocyanides, isothiocyanates, and oxiranes has been developed. An array of substituted oxathianes have been obtained in acceptable to good yields. The reaction product could be modulated using Bu3P or TBPAc as an organo-catalyst. This work offers an opportunity for the further implementation of isocyanides in library design.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号