首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1188篇
  免费   27篇
  国内免费   6篇
电工技术   104篇
综合类   2篇
化学工业   406篇
金属工艺   25篇
机械仪表   28篇
建筑科学   31篇
能源动力   63篇
轻工业   112篇
水利工程   2篇
无线电   59篇
一般工业技术   229篇
冶金工业   47篇
原子能技术   30篇
自动化技术   83篇
  2023年   9篇
  2022年   7篇
  2021年   20篇
  2020年   5篇
  2019年   8篇
  2018年   19篇
  2017年   16篇
  2016年   19篇
  2015年   12篇
  2014年   20篇
  2013年   63篇
  2012年   35篇
  2011年   48篇
  2010年   42篇
  2009年   72篇
  2008年   50篇
  2007年   69篇
  2006年   54篇
  2005年   53篇
  2004年   58篇
  2003年   47篇
  2002年   39篇
  2001年   38篇
  2000年   42篇
  1999年   25篇
  1998年   35篇
  1997年   29篇
  1996年   24篇
  1995年   22篇
  1994年   13篇
  1993年   16篇
  1992年   15篇
  1991年   18篇
  1990年   9篇
  1989年   15篇
  1988年   11篇
  1987年   17篇
  1986年   19篇
  1985年   19篇
  1984年   11篇
  1983年   13篇
  1982年   10篇
  1981年   6篇
  1980年   5篇
  1979年   13篇
  1977年   7篇
  1976年   5篇
  1975年   3篇
  1974年   3篇
  1973年   3篇
排序方式: 共有1221条查询结果,搜索用时 15 毫秒
21.
Aluminum nitride (AlN)–silicon carbide (SiC) nanocomposite powders were prepared by the nitridation of aluminum-silicon carbide (Al4SiC4) with the specific surface area of 15.5 m2·g−1. The powders nitrided at and above 1400°C for 3 h contained the 2H-phases which consisted of AlN-rich and SiC-rich phases. The formation of homogeneous solid solution proceeded with increasing nitridation temperature from 1400° up to 1500°C. The specific surface area of the AlN–SiC powder nitrided at 1500°C for 3 h was 19.5 m2·g−1, whereas the primary particle size (assuming spherical particles) was estimated to be ∼100 nm.  相似文献   
22.
Wetting phenomena and the effect of alumina surface orientation on the wettability in Si/α-Al2O3 system were studied by an improved sessile drop method using     ,     , C(0001) faces of single crystals and polycrystals at 1723 K in a reducing Ar–3% H2 atmosphere. The contact angles show a vibration behavior for all the single crystals but to a less extent for the polycrystals. The extent of the vibration correlates not only with the reaction intensity but also with the stability of the Si droplet on the alumina surfaces. The interfacial reaction leads to the formation of a series of reaction rings, which is more serious at the single crystal surfaces. More importantly, the wettability is dependent on the alumina surface orientation, with the intrinsic contact angles being about 98±2°, 101±1°, 69±1°, and 98±2°, respectively, for the     ,     , C(0001) and polycrystal α-Al2O3 substrates. The much smaller contact angle for molten Si on the C(0001) surface is explained by the favorable reduction in the Si/α-Al2O3 interfacial free energy by the terminated and enriched aluminum atoms at the reconstructed     surface. The importance of the aluminum presence at the Si/α-Al2O3 interface to the wettability of this system was further demonstrated by a substantial improvement in the wettability of the     α-Al2O3 substrates by Si–Al alloys.  相似文献   
23.
To develop insulating materials with a high thermally conductive anisotropy, planarly aligned mesogenic epoxy (ME) resin film was fabricated by uniaxial coating on a hydrophobic polyethylene terephthalate substrate. Grazing incidence small-angle X-ray scattering (GISAXS) and transmission SAXS measurements exhibited that the films spontaneously formed uniaxially aligned monodomain-like smectic structures by curing on the hydrophobic substrate. Then, an in- and out-of-plane thermal conductivity of 10 and 0.048 W m−1 K−1 and outstanding thermal conductivity anisotropy of 208 have been confirmed, respectively. The ME resin films with high thermal conductivity can be applied as insulating materials for multiple-layer electrical and electronic devices.  相似文献   
24.
The oxidation behavior of pure titanium has been investigated in the temperature range of 1000 K to 1300 K in CO2 or Ar-10%CO2. Optical microscopy, electron probe microanalyses, and X-ray measurements on the oxide scales formed during oxidation indicate that their structures are nearly independent of temperature and the corrosion atmosphere. The scales consisted of two layers, an external one and an internal one, having a rutile (TiO2) structure. The parabolic rate law was confirmed for growth of the external scale and the permeation depth of oxygen in titanium with apparent activation energies of 266 and 226 kJ/mol, respectively. The rate-determining diffusion species in the oxidation processes are discussed.  相似文献   
25.
Amorphous Al50Ta60 alloy powders have been synthesized by mechanical alloying (MA) from elemental powders of aluminium and tantalum, and mechanical disordering (MD) from crystalline intermetallic compound powders of AlTa respectively using the rod milling technique. The mechanically alloyed and the mechanically disordered alloy powders were characterized by X-ray diffraction, scanning electron microscopy, electron probe microanalysis, transmission electron microscopy, differential thermal analysis, differential scanning calorimetry and chemical analysis. The results have shown that the crystal-to amorphous transformation in the MD process occurs through one stage, while the crystallineto-amorphous formation in the MA process occurs through three stages. At the early and intermediate stages of the MA time, heating the alloy powders to 700 K leads to the formation of an amorphous phase by a solid-state amorphizing reaction. At the final stage of the MA time, the amorphous phase is crystallized through a single sharp exothermic peak. Contrary to this, amorphous alloy powders produced by MD are crystallized through two broad exothermic peaks.  相似文献   
26.
Recently, many extensive studies have been conducted on robot control via self-positioning estimation techniques. In the simultaneous localization and mapping (SLAM) method, which is one approach to self-positioning estimation, robots generally use both autonomous position information from internal sensors and observed information on external landmarks. SLAM can yield higher accuracy positioning estimations depending on the number of landmarks; however, this technique involves a degree of uncertainty and has a high computational cost, because it utilizes image processing to detect and recognize landmarks. To overcome this problem, we propose a state-of-the-art method called a generalized measuring-worm (GMW) algorithm for map creation and position estimation, which uses multiple cooperating robots that serve as moving landmarks for each other. This approach allows problems of uncertainty and computational cost to be overcome, because a robot must find only a simple two-dimensional marker rather than feature-point landmarks. In the GMW method, the robots are given a two-dimensional marker of known shape and size and use a front-positioned camera to determine the marker distance and direction. The robots use this information to estimate each other’s positions and to calibrate their movement. To evaluate the proposed method experimentally, we fabricated two real robots and observed their behavior in an indoor environment. The experimental results revealed that the distance measurement and control error could be reduced to less than 3 %.  相似文献   
27.
In this work, we analyze variable space diversity of Pareto optimal solutions (POS) and study the effectiveness of crossover and mutation operators in evolutionary many-objective optimization. First we examine the diversity of variables in the true POS on many-objective 0/1 knapsack problems with up to 20 items (bits), showing that variables in POS become noticeably diverse as we increase the number of objectives. We also verify the effectiveness of conventional two-point and uniform crossovers, Local Recombination that selects mating parents based on proximity in objective space, and two-point and uniform crossover operators which Controls the maximum number of Crossed Genes (CCG). We use NSGA-II, SPEA2, IBEA ??+? and MSOPS, which adopt different selection methods, and many-objective 0/1 knapsack problems with $n=\{100,250,500,750,\mbox{1,000}\}$ items (bits) and m?=?{2,4,6,8,10} objectives to verify the search performance of each crossover operator. Simulation results reveal that Local Recombination and CCG operators significantly improve search performance especially for NSGA-II and MSOPS, which have high diversity of genes in the population. Also, results show that CCG operators achieve higher search performance than Local Recombination for m?≥?4 objectives and that their effectiveness becomes larger as the number of objectives m increases. In addition, the contribution of CCG and mutation operators for the solutions search is analyzed and discussed.  相似文献   
28.
People routinely carry mobile devices in their daily lives and obtain a variety of information from the Internet in many different situations. In searching for information (content) with a mobile device, a user’s activity (e.g., moving or stationary) and context (e.g., commuting in the morning or going downtown in the evening) often change, and such changes can affect the user’s degree of concentration on his or her mobile device’s display and information needs. Therefore, a search system should provide the user with an amount of information suitable for the current activity and a type of information suitable for the current context. In this study, we present the design and implementation of a content search system that considers a mobile user’s activity and context, with the goal of reducing the user’s operation load for content search. The proposed system switches between two kinds of content search systems according to the user’s activity: the location-based content search system is activated when the user is stationary (e.g., standing and sitting), while a menu-based content search system is activated when the user is moving (e.g., walking). Both systems present information according to user context. The location-based system presents detailed information via menus and a map according to location-based categories. The menu-based system presents only a few options to enable users to get content easily. Through user experiments, we confirmed that participants could get desired information more easily with this system than with a commercial search system.  相似文献   
29.
The sinterability of mullite (3Al2O3·2SiO2) powder prepared by chemical vapour deposition was examined to improve the conditions for fabricating dense mullite ceramics. The starting powder contained not only mullite, but also a small amount of -Al2O3 (Al-Si spinel) and amorphous material. Although the compressed powder was fired at a temperature between 1550 and 1700 °C for 1, 3 and 5 h, the relative densities of the sintered compacts were limited to 90%: (i) due to the creation of pores/microcracks during the solid state reaction (1100–1350 °C), and (ii) due to restriction on the rearrangement of grains because the amount of liquid phase (1550–1700 °C) was insufficient. Calcination of the starting powder was effective for preparation of easily sinterable powder with homogeneous composition. When the compact formed by compressing the calcined powder at 1400 °C for 1 h was fired at 1650 °C for 3 h, the relative density was raised up to 97.2%; moreover, mullite was the only phase detected from the sintered compact. The sintered compact was composed of polyhedral grains with sizes of 1–2 m and elongated grains with long axes of 6 m.  相似文献   
30.
Solid particle erosion in industrial applications has been a serious problem in many engineering fields. Earlier studies on fiber-reinforced plastic (FRP) composites were mainly focusing on the erosive wear behavior at several different impact angles. However, the effect of fiber orientation on FRP composites has not been thoroughly investigated. Since fiber orientation is one of the important factors in which causing erosive wear damages to FRP composites, in order to understand the virtue of this problem, it is important to investigate the effect of fiber orientation at different impact angles. In this research, the effect of fiber orientation of unidirectional fiber-reinforced plastic composites on erosive wear behavior was studied. Sandblasting-type erosion tests were conducted on the FRP composites with fiber orientation ranging at three impact angles to clarify the relation between fiber orientation and erosive wear behavior. The Dyneema fiber (ductile material) and the carbon fiber (brittle material) were used for the reinforcement fiber in FRP. From the result, it is confirmed that CFRP composites with higher fiber orientation angle erode faster than the composites with lower fiber orientation angle. But the erosion characteristic of DFRP was almost the same regardless of the fiber orientation angle. The damaged surfaces of the FRP composites were then analyzed using scanning electron microscopy and the possible erosion wear mechanisms were investigated.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号