首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4386篇
  免费   137篇
  国内免费   10篇
电工技术   67篇
综合类   29篇
化学工业   1335篇
金属工艺   105篇
机械仪表   85篇
建筑科学   265篇
矿业工程   8篇
能源动力   73篇
轻工业   348篇
水利工程   25篇
石油天然气   1篇
无线电   256篇
一般工业技术   810篇
冶金工业   585篇
原子能技术   39篇
自动化技术   502篇
  2022年   48篇
  2021年   56篇
  2020年   46篇
  2019年   57篇
  2018年   65篇
  2017年   55篇
  2016年   94篇
  2015年   82篇
  2014年   113篇
  2013年   205篇
  2012年   172篇
  2011年   254篇
  2010年   185篇
  2009年   164篇
  2008年   196篇
  2007年   185篇
  2006年   133篇
  2005年   157篇
  2004年   132篇
  2003年   103篇
  2002年   85篇
  2001年   83篇
  2000年   85篇
  1999年   88篇
  1998年   106篇
  1997年   87篇
  1996年   72篇
  1995年   76篇
  1994年   70篇
  1993年   74篇
  1992年   71篇
  1991年   49篇
  1990年   74篇
  1989年   46篇
  1988年   45篇
  1987年   53篇
  1986年   42篇
  1985年   60篇
  1984年   54篇
  1983年   47篇
  1982年   51篇
  1981年   43篇
  1979年   43篇
  1978年   44篇
  1977年   65篇
  1976年   43篇
  1975年   42篇
  1974年   56篇
  1972年   41篇
  1970年   40篇
排序方式: 共有4533条查询结果,搜索用时 15 毫秒
991.
A novel model is presented for predicting the phase selective filler localization in an equilibrium state for ternary rubber blends of SBR, NBR, and NR. It is based on surface tension data of the rubber components and the filler. Phase‐selective filler localization in ternary rubber blends is determined experimentally by means of FTIR spectroscopy on the basis of the wetting concept. It is found that by preparation of ternary blends with certain silica loadings, pre‐mixed in each blend phase using the masterbatch technology, silica transfer processes between blend phases take place until the equilibrium filler distribution is reached. The sequence of the silica transfer processes can be explained by taking into consideration the formation of a phase‐in‐phase morphology of the ternary blend.

  相似文献   

992.
A novel series of 30 symmetric bispyridinium and related N‐heteroaromatic bisquaternary salts with a propane‐1,3‐diyl linker was synthesized and characterized for their binding affinity at the MB327 binding site of nicotinic acetylcholine receptor (nAChR) from Torpedo californica. Compounds targeting this binding site are of particular interest for research into new antidotes against organophosphate poisoning, as therapeutically active 4‐tert‐butyl‐substituted bispyridinium salt MB327 was previously identified as a nAChR re‐sensitizer. Efficient access to the target compounds was provided by newly developed methods enabling N‐alkylation of sterically hindered or electronically deactivated heterocycles exhibiting a wide variety of functional groups. Determination of binding affinities toward the MB327 binding site at the nAChR, using a recently developed mass spectrometry (MS)‐based Binding Assay, revealed that several compounds reached affinities similar to that of MB327 (pKi=4.73±0.03). Notably, the newly prepared lipophilic 4‐tert‐butyl‐3‐phenyl‐substituted bispyridinium salt PTM0022 ( 3 h ) was found to have significantly higher binding affinity, with a pKi value of 5.16±0.07, thus representing considerable progress toward the development of more potent nAChR re‐sensitizers.  相似文献   
993.
Perspective on the Development of Lead-free Piezoceramics   总被引:3,自引:0,他引:3  
A large body of work has been reported in the last 5 years on the development of lead-free piezoceramics in the quest to replace lead–zirconate–titanate (PZT) as the main material for electromechanical devices such as actuators, sensors, and transducers. In specific but narrow application ranges the new materials appear adequate, but are not yet suited to replace PZT on a broader basis. In this paper, general guidelines for the development of lead-free piezoelectric ceramics are presented. Suitable chemical elements are selected first on the basis of cost and toxicity as well as ionic polarizability. Different crystal structures with these elements are then considered based on simple concepts, and a variety of phase diagrams are described with attractive morphotropic phase boundaries, yielding good piezoelectric properties. Finally, lessons from density functional theory are reviewed and used to adjust our understanding based on the simpler concepts. Equipped with these guidelines ranging from atom to phase diagram, the current development stage in lead-free piezoceramics is then critically assessed.  相似文献   
994.
A two-dimensional numerical model that predicts the reliability of multilayer capacitors (MLCs) during soldering and bending is presented. The Weibull parameters used in the model are based on measurements of soldered MLC devices. The preheating and soldering temperatures have a dominant impact on the failure probability, in comparison to the thickness of the nickel layer, the soft solder geometry, and the number of inner electrodes. Comparison of calculated and measured reliability of three MLC sizes leads to the assumption that residual stresses due to the manufacturing process or size-related microstructure are important.  相似文献   
995.
The release of Mo (as molybdate) from the Mo storage protein (MoSto), which is unique among all existing metalloproteins, is strongly influenced by temperature and pH value; other factors (incubation time, protein concentration, degree of purity) have minor, though significant effects. A detailed pH titration at 12 degrees C revealed that three different steps can be distinguished for the Mo-release process. A proportion of approximately 15% at pH 6.8-7.0, an additional 25% at pH 7.2-7.5 and ca. 50% (up to 90% in total) at pH 7.6-7.8. This triphasic process supports the assumption of the presence of different types of molybdenum-oxide-based clusters that exhibit different pH lability. The complete release of Mo was achieved by increasing the temperature to 30 degrees C and the pH value to >7.5. The Mo-release process does not require ATP; on the contrary, ATP prevents, or at least reduces the degree of metal release, depending on the concentration of the nucleotide. From this point of view, the intracellular ATP concentration is suggested to play-in addition to the pH value-an indirect but crucial role in controlling the extent of Mo release in the cell. The binding of molybdenum to the apoprotein (reconstitution process) was confirmed to be directly dependent on the presence of a nucleotide (preferably ATP) and MgCl2. Maximal reincorporation of Mo required 1 mM ATP, which could partly be replaced by GTP. When the storage protein was purified in the presence of ATP and MgCl2 (1 mM each), the final preparation contained 80 Mo atoms per protein molecule. Maximal metal loading (110-115 atoms/MoSto molecule) was only achieved, if Mo was first completely released from the native protein and subsequently (re-) bound under optimal reconstitution conditions: 1 h incubation at pH 6.5 and 12 degrees C in the presence of ATP, MgCl2 and excess molybdate. A corresponding tungsten-containing storage protein ("WSto") could not only be synthesized in vivo by growing cells, but could also be constructed in vitro by a metalate-ion exchange procedure by using the isolated MoSto protein. The high W content of the isolated cell-made WSto (approximately 110 atoms/protein molecule) and the relatively low amount of tungstate that was released from the protein under optimal "release conditions", demonstrates that the W-oxide-based clusters are more stable inside the protein cavity than the Mo-oxide analogues, as expected from the corresponding findings in polyoxometalate chemistry. The optimized isolation of the W-loaded protein form allowed us to get single crystals, and to determine the crystal X-ray structure. This proved that the protein contains remarkably different types of polyoxotungstates, the formation of which is templated in an unprecedented process by the different protein pockets. (Angew. Chem. Int. Ed. 2007, 46, 2408-2413).  相似文献   
996.
Changes in fatty acid metabolism associated with insulin resistance have been described in rats and humans but have not been well characterized in the frequently used mouse model of diet-induced obesity. To analyse the early phase as well as established insulin resistance, C57BL/6 mice were placed for 1 or 16 weeks on a high fat diet (1w-HFD, 16w-HFD). Endocrine and metabolic parameters indicated that 1w-HFD mice showed a moderate but significant induction of insulin resistance while 16w-HFD mice exhibited profound obesity-associated insulin resistance and dyslipidemias. Significant alterations in fatty acid composition were observed in plasma and liver in both groups. Liver phospholipid-associated arachidonate and docosahexaenoate were increased in both 1w-HFD and 16w-HFD mice, possibly due to increased expression of the desaturases Fads1 and Fads2. Unexpectedly, SCD1 activity and gene expression in liver were decreased in the 1w-HFD group accompanied by diminished total hepatic lipid levels, while they were increased in chronically fed mice. Our data indicate that the early phase of HFD-induced insulin resistance is not associated with elevated liver lipid concentration. Furthermore, the early and persistent rise of arachidonate and docosahexaenoate indicates that insulin resistance is not due to insufficient availability (or concentrations) of polyunsaturated fatty acids as postulated previously. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
997.
Gas-phase combustion of hydrocarbons and CO in exhaust gases are normally performed competitively by supported noble metals. With the help of high-throughput technologies complex mixed oxides, such as the amorphous porous Ce20Ti50Cr30Ox have been discovered, which selectively convert propane in the presence of excess of carbon monoxide. These findings are of fundamental importance for heterogeneous catalysis and may have implications on the future development of novel exhaust gas catalysts. In this study the effect of the various elements of the mixed oxide catalysts on activity and selectivity has been investigated and interpreted. The results of attempts to further improve the catalysts by additional doping are presented.  相似文献   
998.
999.
Reinforcing fillers are added to elastomeric compounds to improve and adjust several mechanical, dynamical, tribological, etc. properties with respect to different applications, i.e. for automotive tires, or technical rubber goods. Carbon black and precipitated silica are widely used as rubber reinforcing fillers; however, some new classes of nanosized substances like organophilic modified clay or carbon nanotubes are presently intensive studied as possible future filler systems in combination with carbon black or silica.An important parameter for the dispersibility and compatibility of the filler in the polymer matrix of rubber compounds is the surface energy and surface polarity of the solid filler particles. Therefore, we systematically measured and compared the dynamic contact angles of a collection of different filler types (carbon blacks, silica, carbon nanotubes and organoclays) using the Wilhelmy method, whereby the particles were fixed as a thin layer at a double-sided adhesive tape. From the contact angle values the polar and disperse part of the surface energies of the filler particles were calculated by fitting Fowkes formula. For an estimation of the compatibility of the fillers with different types of rubber polymers we additionally analyzed the surface energy and polarity of the gum (unfilled) elastomers. From the evaluated surface energies and polarities, thermodynamic predictors for the dispersibility (enthalpy of immersion), the adhesion between filler particles and polymer matrix in the nanocomposite, and for the flocculation behaviour of the particles in a rubber matrix (difference in the works of adhesion) were derived. These thermodynamic predictors improve considerably the compounding process of novel rubber nanocomposites with respect to target-oriented adjustment of rubber properties.  相似文献   
1000.
The binary bismuth-rhodium (Bi-Rh) phase diagram was reinvestigated from 23 to 60 at.% Rh with focus on the BiRh phase, applying powder-x-ray diffraction (XRD), high temperature powder-XRD, differential thermal analyses and scanning electron microscopy. The phase boundaries of the BiRh phase at 750 °C and the temperature of its peritectic decomposition were refined. In addition, the existence of the two phases Bi4Rh and Bi2Rh (in two modifications depending on temperature) could be confirmed. Most of the reaction temperatures reported in the literature could be verified within a range of about ± 10 °C. Nevertheless, a few temperatures had to be revised, such as those of the peritectic reactions L + Rh \(\rightleftharpoons\) BiRh at 979 °C and L + BiRh \(\rightleftharpoons\) β-Bi2Rh at 785 °C. No evidence could be found for the presence of a stable Bi3Rh phase in well annealed samples; from the present results it must be concluded that Bi3Rh is actually metastable. On the other hand, a new orthorhombic phase BiRh0.81 was discovered which crystallizes in the MnP structure type (Pmna). It was found that the temperatures of the transition between the low-temperature modification α-Bi2Rh and its high-temperature form β-Bi2Rh depend considerably on the presence or absence of metastable Bi3Rh and stable BiRh0.81, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号