首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5264篇
  免费   91篇
  国内免费   20篇
电工技术   263篇
综合类   7篇
化学工业   1006篇
金属工艺   155篇
机械仪表   99篇
建筑科学   75篇
矿业工程   2篇
能源动力   107篇
轻工业   304篇
水利工程   8篇
石油天然气   17篇
无线电   553篇
一般工业技术   1030篇
冶金工业   1285篇
原子能技术   160篇
自动化技术   304篇
  2023年   18篇
  2022年   56篇
  2021年   101篇
  2020年   40篇
  2019年   56篇
  2018年   59篇
  2017年   59篇
  2016年   78篇
  2015年   58篇
  2014年   84篇
  2013年   182篇
  2012年   174篇
  2011年   239篇
  2010年   158篇
  2009年   165篇
  2008年   183篇
  2007年   184篇
  2006年   156篇
  2005年   158篇
  2004年   142篇
  2003年   138篇
  2002年   108篇
  2001年   106篇
  2000年   105篇
  1999年   134篇
  1998年   536篇
  1997年   288篇
  1996年   216篇
  1995年   164篇
  1994年   130篇
  1993年   118篇
  1992年   78篇
  1991年   80篇
  1990年   62篇
  1989年   69篇
  1988年   51篇
  1987年   55篇
  1986年   60篇
  1985年   59篇
  1984年   54篇
  1983年   37篇
  1982年   42篇
  1981年   46篇
  1980年   43篇
  1979年   31篇
  1978年   29篇
  1977年   28篇
  1976年   73篇
  1975年   17篇
  1974年   14篇
排序方式: 共有5375条查询结果,搜索用时 13 毫秒
31.
To fabricate an Al-V matrix composite reinforced with submicron-sized Al2O3 and AlxVy (Al3V, Al10V) phases, high energy mechanical milling (HEMM) and sintering were employed. By increasing the milling time, the size of mechanically milled powder was significantly reduced. In this study, the average powder size of 59 μm for Al, and 178 μm for V2O5 decreased with the formation of a new product, Al-Al2O3-AlxVy, with a size range from 1.3 μm to 2.6 μm formed by the in-situ combustion reaction during sintering of HEM milled Al and V2O5 composite powders. The in-situ reaction between Al and V2O5 during the HEMM and sintering transformed the Al2O3 and AlxVy (Al3V, Al10V) phases. Most of the reduced V reacted with excess the Al to form AlxVy (Al3V, Al10V) with very little V dissolved into Al matrix. By increasing the milling time and weight percentage of V2O5, the hardness of the Al-Al2O3-AlxVy composite sintered at 1173 K increased. The composite fabricated with the HEMM Al-20wt.%V2O5 composite powder and sintering at 1173 K for 2 h had the highest hardness.  相似文献   
32.
Liquid-in-liquid dispersion, such as organic liquid in water or water in organic liquid, has been performed using dc or ac voltage applied between nozzle and ground electrode. In the present study, pulsed high voltage was applied to produce droplets with controlled diameter in wide range. The high voltage pulse source was capacitor discharge type with 20 - 50 Hz and ranged from 0 to several kV. Water glass was atomized in alcohol solution into diameters ranging from several mum to sub-mm, depending on applied voltage. The atomized water glass droplets were solidified by removing water molecules from the water glass. Synchronized droplet formation with pulse frequency was possible by controlling pulse voltage, width and frequency, which produced uniform sized droplets successively. When the pulse voltage was raised, the droplet formation mode changed from the synchronized formation to dispersion mode through transient mode. In the dispersion mode, droplets of several mum diameter having high uniformity were produced. Utilization of high voltage and high-speed pulse to liquid-liquid dispersion could make it possible to atomize in a conductive liquid without electrolysis.  相似文献   
33.
During positive bias temperature (BT) aging, a large number of interface traps on p+(B) polysilicon MOS devices are generated in the upper half of the bandgap without an increase in the charges trapped in the gate oxide. The increase in interface traps can be reduced by processes which exclude the hydrogen included during fabrication. The increase in the interface-state density is explained as follows. The generation of the interface traps is caused by hydrogen ions reaching at the SiO2/Si interface through the gate oxide from the polysilicon-gate electrode. The hydrogen ions combine with activated boron and are released from the boron under positive BT aging. The increase in interface traps is formulated by equations which are derived from the above model  相似文献   
34.
The virtual path concept has several valuable features to construct an economical and efficient asynchronous transfer mode (ATM) network. One of them is bandwidth control which affords transmission efficiency improvement through statistical sharing of capacity. An effective bandwidth control algorithm and its calculated performance are described. Network performance with the algorithm is evaluated, and the bandwidth control is shown to successfully improve network transmission efficiency with only a slight increase in processing load compared to the fixed bandwidth scheme. A method is also proposed to equalize call loss probability for each virtual path. The effectiveness of the method is demonstrated by analysis  相似文献   
35.
A BiCMOS logic circuit applicable to sub-2-V digital circuits has been developed. A transiently saturated full-swing BiCMOS (TS-FS-BiCMOS) logic circuit operates twice as fast as CMOS at 1.5-V supply. A newly developed transient-saturation technique, with which bipolar transistors saturate only during switching periods, is the key to sub-2-V operation because a high-speed full-swing operation is achieved to remove the voltage loss due to the base-emitter turn-on voltage. Both small load dependence and small fan-in dependence of gate delay time are attained with this technique. A two-input gate fabricated with 0.3-μm BiCMOS technology verifies the performance advantage of TS-FS-BiCMOS over other BiCMOS circuits and CMOS at sub 2-V supply  相似文献   
36.
This paper proposes a new layered transport network architecture on which the WDM optical path network can be effectively created. The optical path network will play a key role in the development of the transport network that will realize the bandwidth-abundant B-ISDN. This paper extends the layered transport network architecture described in ITU-T Recommendation G.803 which is applied in existing SDH networks. First, we elucidate an application example of WDM optical path networks. Next, we propose a new layered architecture for WDM-based transport networks that retains maximum commonality with the layered architectures developed for existing B-ISDN networks. The proposed architecture is composed of circuit layer networks, electrical path layer networks, optical layer networks, and physical media (fiber) networks. The optical layer is divided into an optical path layer and an optical section layer. The optical path layer accommodates electrical paths. Optical section layer networks are divided into optical multiplex section (OMS) layer networks and optical repeater section (ORS) layer networks. The OMS layer network is concerned with the end-to-end transfer of information between locations transferring or terminating optical paths, whereas the ORS layer is concerned with the transfer of information between individual optical repeaters. Finally, a detailed functional block model of WDM optical path networks, the function allocation of each layer, and an optical transport module (OTM) are developed  相似文献   
37.
A multi-level NAND Flash memory cell, using a new Side-WAll Transfer-Transistor (SWATT) structure, has been developed for a high performance and low bit cost Flash EEPROM. With the SWATT cell, a relatively wide threshold voltage (Vth) distribution of about 1.1 V is sufficient for a 4-level memory cell in contrast to a narrow 0.6 V distribution that is required for a conventional 4-level NAND cell. The key technology that allows this wide Vth distribution is the Transfer Transistor which is located at the side wall of the Shallow Trench Isolation (STI) region and is connected in parallel with the floating gate transistor. During read, the Transfer Transistors of the unselected cells (connected in series with the selected cell) function as pass transistors. So, even if the Vth of the unselected floating gate transistor is higher than the control gate voltage, the unselected cell will be in the ON state. As a result, the Vth distribution of the floating gate transistor can be wider and the programming can be faster because the number of program/verify cycles can be reduced. Furthermore, the SWATT cell results in a very small cell size of 0.57 μm2 for a 0.35 μm rule. Thus, the SWATT cell combines a small cell size with a multi-level scheme to realize a very low bit cost. This paper describes the process technology and the device performance of the SWATT cell, which can be used to realize NAND EEPROM's of 512 Mbit and beyond  相似文献   
38.
This paper describes a computer vision system for the automatic extraction and velocity measurement of moving leukocytes that adhere to microvessel walls from a sequence of images. The motion of these leukocytes can be visualized as motion along the wall contours. The authors use the constraint that the leukocytes move along the vessel wall contours to generate a spatiotemporal image, and the leukocyte motion is then extracted using the methods of spatiotemporal image analysis. The generated spatiotemporal image is processed by a special-purpose orientation-selective filter and a subsequent grouping process newly developed for this application. The orientation-selective filter is designed by considering the particular properties of the spatiotemporal image in this application in order to enhance only the traces of leukocytes. In the subsequent grouping process, leukocyte trace segments are selected and grouped among all the segments obtained by simple thresholding and skeletonizing operations. The authors show experimentally that the proposed method can stably extract leukocyte motion  相似文献   
39.
Dye‐sensitized solar cells (DSSCs) are receiving considerable attention as low‐cost alternatives to conventional solar cells. In DSSCs based on liquid electrolytes, a photoelectric efficiency of 11 % has been achieved, but potential problems in sealing the cells and the low long‐term stability of these systems have impeded their practical use. Here, we present a thermoplastic gel electrolyte (TPGE) as an alternative to the liquid electrolytes used in DSSCs. The TPGE exhibits a thermoplastic character, high conductivity, long‐term stability, and can be prepared by a simple and convenient protocol. The viscosity, conductivity, and phase state of the TPGE can be controlled by tuning the composition. Using 40 wt % poly(ethylene glycol) (PEG) as the polymeric host, 60 wt % propylene carbonate (PC) as the solvent, and 0.65 M KI and 0.065 M I2 as the ionic conductors, a TPGE with a conductivity of 2.61 mS cm–2 is prepared. Based on this TPGE, a DSSC is fabricated with an overall light‐to‐electrical‐energy conversion efficiency of 7.22 % under 100 mW cm–2 irradiation. The present findings should accelerate the widespread use of DSSCs.  相似文献   
40.
The huge information storage capability of DNA and its ability to self‐assemble can be harnessed to enable massively parallel computing in a small space. DNA‐based logic gates are designed that rely on DNA strand displacement reactions; however, computation is slow due to time‐consuming DNA reassembly processes and prone to failure as DNA is susceptible to degradation by nucleases and under certain solution conditions. Here, it is shown that the presence of a cationic copolymer boosts the speed of DNA logic gate operations that involve multiple and parallel strand displacement reactions. Two kinds of DNA molecular operations, one based on a translator gate and one on a seesaw gate, are successfully enhanced by the copolymer without tuning of computing conditions or DNA sequences. The copolymer markedly reduces operation times from hours to minutes. Moreover, the copolymer enhances nuclease resistance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号