首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4592篇
  免费   326篇
  国内免费   7篇
电工技术   23篇
综合类   6篇
化学工业   1586篇
金属工艺   29篇
机械仪表   75篇
建筑科学   184篇
矿业工程   5篇
能源动力   92篇
轻工业   857篇
水利工程   45篇
石油天然气   16篇
无线电   218篇
一般工业技术   555篇
冶金工业   730篇
原子能技术   30篇
自动化技术   474篇
  2024年   10篇
  2023年   66篇
  2022年   346篇
  2021年   343篇
  2020年   159篇
  2019年   152篇
  2018年   151篇
  2017年   145篇
  2016年   151篇
  2015年   157篇
  2014年   191篇
  2013年   291篇
  2012年   259篇
  2011年   333篇
  2010年   243篇
  2009年   240篇
  2008年   241篇
  2007年   221篇
  2006年   159篇
  2005年   128篇
  2004年   133篇
  2003年   113篇
  2002年   98篇
  2001年   39篇
  2000年   53篇
  1999年   48篇
  1998年   49篇
  1997年   34篇
  1996年   40篇
  1995年   32篇
  1994年   35篇
  1993年   30篇
  1992年   20篇
  1991年   9篇
  1990年   19篇
  1989年   20篇
  1988年   25篇
  1987年   23篇
  1986年   18篇
  1985年   14篇
  1984年   7篇
  1983年   9篇
  1982年   14篇
  1981年   11篇
  1980年   3篇
  1979年   11篇
  1978年   8篇
  1977年   3篇
  1973年   4篇
  1955年   2篇
排序方式: 共有4925条查询结果,搜索用时 31 毫秒
991.
(1) Background: Chemotherapy-induced peripheral neuropathy (CIPN) decreases the quality of life of patients and can lead to a dose reduction and/or the interruption of chemotherapy treatment, limiting its effectiveness. Potential pathophysiological mechanisms involved in the pathogenesis of CIPN include chronic oxidative stress and subsequent increase in free radicals and proinflammatory cytokines. Approaches for the treatment of CIPN are highly limited in their number and efficacy, although several antioxidant-based therapies have been tried. On the other hand, ozone therapy can induce an adaptive antioxidant and anti-inflammatory response, which could be potentially useful in the management of CIPN. (2) Methods: The aims of this works are: (a) to summarize the potential mechanisms that could induce CIPN by the most relevant drugs (platinum, taxanes, vinca alkaloids, and bortezomib), with particular focus on the role of oxidative stress; (b) to summarize the current situation of prophylactic and treatment approaches; (c) to describe the action mechanisms of ozone therapy to modify oxidative stress and inflammation with its potential repercussions for CIPN; (d) to describe related experimental and clinical reports with ozone therapy in chemo-induced neurologic symptoms and CIPN; and (e) to show the main details about an ongoing focused clinical trial. (3) Results: A wide background relating to the mechanisms of action and a small number of experimental and clinical reports suggest that ozone therapy could be useful to prevent or improve CIPN. (4) Conclusions: Currently, there are no clinically relevant approaches for the prevention and treatment of stablished CIPN. The potential role of ozone therapy in this syndrome merits further research. Randomized controlled trials are ongoing.  相似文献   
992.
Acute kidney injury in patients who suffer a malignancy is a common complication. Due to its high prevalence and effective treatment, one of the most frequent causes that both oncologists and nephrologists must be aware of is acute tubulointerstitial nephritis (ATIN). ATIN is an immunomediated condition and the hallmark of the disease, with the presence of a tubulointerstitial inflammatory infiltrate in the renal parenchyma. This infiltrate is composed mainly of T lymphocytes that can be accompanied by macrophages, neutrophils, or eosinophils among other cells. One of the major causes is drug-related ATIN, and some antineoplastic treatments have been related to this condition. Worthy of note are the novel immunotherapy treatments aimed at enhancing natural immunity in order to defeat cancer cells. In the context of the immunosuppression status affecting ATIN patients, some pathogen antigens can trigger the development of the disease. Finally, hematological malignancies can also manifest in the kidney leading to ATIN, even at the debut of the disease. In this review, we aim to comprehensively examine differential diagnosis of ATIN in the setting of a neoplastic patient.  相似文献   
993.
Magnetic beads composed by polyvinyl alcohol and iron oxides were developed and fully characterized. The materials were not only cross-linked by a physical treatment but also the magnetic nanoparticles (MNPs) are acting as cross-linking dots. Interestingly, the analysis of scanning electron micrographs revealed that, in the case of hydrated samples, flower-like structures (average diameter 6–9 μm) being constituted by MNPs were present, whereas when the beads were dried the MNPs structure changed to porous spheres (average diameter 2–3 μm). Some of the prepared materials were tested to determine their capability to act as water remediation devices, and good removal results were obtained toward both methylene blue (average removal efficiency higher than 80%) and methyl orange (average removal efficiency lower than 30%) adsorption. The experiments performed confirmed that the adsorbent, once the treatment has ended, can be removed off through the simple employment of a permanent magnet.  相似文献   
994.
Spinal muscular atrophy (SMA) type 1 is a severe infantile autosomal-recessive neuromuscular disorder caused by a survival motor neuron 1 gene (SMN1) mutation and characterized by progressive muscle weakness. Without supportive care, SMA type 1 is rapidly fatal. The antisense oligonucleotide nusinersen has recently improved the natural course of this disease. Here, we investigated, with a functional proteomic approach, cerebrospinal fluid (CSF) protein profiles from SMA type 1 patients who underwent nusinersen administration to clarify the biochemical response to the treatment and to monitor disease progression based on therapy. Six months after starting treatment (12 mg/5 mL × four doses of loading regimen administered at days 0, 14, 28, and 63), we observed a generalized reversion trend of the CSF protein pattern from our patient cohort to that of control donors. Notably, a marked up-regulation of apolipoprotein A1 and apolipoprotein E and a consistent variation in transthyretin proteoform occurrence were detected. Since these multifunctional proteins are critically active in biomolecular processes aberrant in SMA, i.e., synaptogenesis and neurite growth, neuronal survival and plasticity, inflammation, and oxidative stress control, their nusinersen induced modulation may support SMN improved-expression effects. Hence, these lipoproteins and transthyretin could represent valuable biomarkers to assess patient responsiveness and disease progression.  相似文献   
995.
Heat shock protein 90 (HSP90) plays an essential role in lung adenocarcinoma, acting as a key chaperone involved in the correct functioning of numerous highly relevant protein drivers of this disease. To this end, HSP90 inhibitors have emerged as promising therapeutic strategies, even though responses to them have been limited to date. Given the need to maximize treatment efficacy, the objective of this study was to use isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic techniques to identify proteins in human lung adenocarcinoma cell lines whose basal abundances were correlated with response to HSP90 inhibitors (geldanamycin and radicicol derivatives). From the protein profiles identified according to response, the relationship between lactate dehydrogenase B (LDHB) and DNA topoisomerase 1 (TOP1) with respect to sensitivity and resistance, respectively, to geldanamycin derivatives is noteworthy. Likewise, rhotekin (RTKN) and decaprenyl diphosphate synthase subunit 2 (PDSS2) were correlated with sensitivity and resistance to radicicol derivatives. We also identified a relationship between resistance to HSP90 inhibition and the p53 pathway by glucose deprivation. In contrast, arginine biosynthesis was correlated with sensitivity to HSP90 inhibitors. Further study of these outcomes could enable the development of strategies to improve the clinical efficacy of HSP90 inhibition in patients with lung adenocarcinoma.  相似文献   
996.
Muscular regeneration is a complex biological process that occurs during acute injury and chronic degeneration, implicating several cell types. One of the earliest events of muscle regeneration is the inflammatory response, followed by the activation and differentiation of muscle progenitor cells. However, the process of novel neuromuscular junction formation during muscle regeneration is still largely unexplored. Here, we identify by single-cell RNA sequencing and isolate a subset of vessel-associated cells able to improve myogenic differentiation. We termed them ‘guide’ cells because of their remarkable ability to improve myogenesis without fusing with the newly formed fibers. In vitro, these cells showed a marked mobility and ability to contact the forming myotubes. We found that these cells are characterized by CD44 and CD34 surface markers and the expression of Ng2 and Ncam2. In addition, in a murine model of acute muscle injury and regeneration, injection of guide cells correlated with increased numbers of newly formed neuromuscular junctions. Thus, we propose that guide cells modulate de novo generation of neuromuscular junctions in regenerating myofibers. Further studies are necessary to investigate the origin of those cells and the extent to which they are required for terminal specification of regenerating myofibers.  相似文献   
997.
Functional amyloids produced in bacteria as nanoscale inclusion bodies are intriguing but poorly explored protein materials with wide therapeutic potential. Since they release functional polypeptides under physiological conditions, these materials can be potentially tailored as mimetic of secretory granules for slow systemic delivery of smart protein drugs. To explore this possibility, bacterial inclusion bodies formed by a self-assembled, tumor-targeted Pseudomonas exotoxin (PE24) are administered subcutaneously in mouse models of human metastatic colorectal cancer, for sustained secretion of tumor-targeted therapeutic nanoparticles. These proteins are functionalized with a peptidic ligand of CXCR4, a chemokine receptor overexpressed in metastatic cancer stem cells that confers high selective cytotoxicity in vitro and in vivo. In the mouse models of human colorectal cancer, time-deferred anticancer activity is detected after the subcutaneous deposition of 500 µg of PE24-based amyloids, which promotes a dramatic arrest of tumor growth in the absence of side toxicity. In addition, long-term prevention of lymphatic, hematogenous, and peritoneal metastases is achieved. These results reveal the biomedical potential and versatility of bacterial inclusion bodies as novel tunable secretory materials usable in delivery, and they also instruct how therapeutic proteins, even with high functional and structural complexity, can be packaged in this convenient format.  相似文献   
998.
999.
The conjugation of organometallic complexes to known bioactive organic frameworks is a proven strategy revered for devising new drug molecules with novel modes of action. This approach holds great promise for the generation of potent drug leads in the quest for therapeutic chemotypes with the potential to overcome the development of clinical resistance. Herein, we present the in vitro antiplasmodial and antiproliferative investigation of ferrocenyl α-aminocresol conjugates assembled by amalgamation of the organometallic ferrocene unit and an α-aminocresol scaffold possessing antimalarial activity. The compounds pursued in the study exhibited higher toxicity towards the chemosensitive (3D7) and -resistant (Dd2) strains of the Plasmodium falciparum parasite than to the human HCC70 triple-negative breast cancer cell line. Indication of cross-resistance was absent for the compounds evaluated against the multi-resistant Dd2 strain. Structure-activity analysis revealed that the phenolic hydroxy group and rotatable σ bond between the α-carbon and NH group of the α-amino-o-cresol skeleton are crucial for the biological activity of the compounds. Spectrophotometric techniques and in silico docking simulations performed on selected derivatives suggest that the compounds show a dual mode of action involving hemozoin inhibition and DNA interaction via minor-groove binding. Lastly, compound 9 a , identified as a possible lead, exhibited preferential binding for the plasmodial DNA isolated from 3D7 P. falciparum trophozoites over the mammalian calf thymus DNA, thereby substantiating the enhanced antiplasmodial activity of the compounds. The presented research demonstrates the strategy of incorporating organometallic complexes into known biologically active organic scaffolds as a viable avenue to fashion novel multimodal compounds with potential to counter the development drug resistance.  相似文献   
1000.
The paper presents several new polymer complexes based on poly(2‐hydroxyethyl) methacrylate (P‐HEMA) and transition metals including Y3+, Eu3+, Tb3+ and Dy3+. Red‐, green‐, blue‐ and yellow‐emitting polymer complexes with remarkable photoluminescent (PL) properties, high degree of transparency and excellent processability both in bulk and in thin film were prepared and investigated. In the case of the prepared P‐HEMA–Eu3+ and P‐HEMA–Tb3+ polymer complexes, divinylbenzene was used as a crosslinker resulting a markedly enhanced PL emission, most probably due to the presence of the benzene rings which improve the efficiency of the energy transfer to the cation emissive centres. The prepared polymer complexes were structurally investigated through Fourier transform infrared and X‐ray photoelectron spectroscopies while atomic force microscopy was used to study the morphology of the prepared thin films. Steady‐state fluorescence spectroscopy and absolute PL quantum yield were used for the investigation of the luminescent properties. The impressive PL emission and the convenience of preparation in bulk or thin films could be important arguments for a wide area of applications ranging from photonic conversion materials in optoelectronic devices (light‐emitting diodes, flat‐panel displays) to full‐colour watermarks on special‐purpose papers or PL inks and coatings. © 2019 Society of Chemical Industry  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号