首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4733篇
  免费   351篇
  国内免费   7篇
电工技术   27篇
综合类   6篇
化学工业   1503篇
金属工艺   45篇
机械仪表   81篇
建筑科学   191篇
矿业工程   5篇
能源动力   97篇
轻工业   886篇
水利工程   43篇
石油天然气   16篇
无线电   243篇
一般工业技术   623篇
冶金工业   775篇
原子能技术   34篇
自动化技术   516篇
  2024年   8篇
  2023年   55篇
  2022年   232篇
  2021年   355篇
  2020年   165篇
  2019年   160篇
  2018年   158篇
  2017年   157篇
  2016年   164篇
  2015年   167篇
  2014年   208篇
  2013年   307篇
  2012年   281篇
  2011年   358篇
  2010年   255篇
  2009年   255篇
  2008年   250篇
  2007年   228篇
  2006年   169篇
  2005年   135篇
  2004年   135篇
  2003年   121篇
  2002年   101篇
  2001年   40篇
  2000年   54篇
  1999年   51篇
  1998年   74篇
  1997年   52篇
  1996年   45篇
  1995年   36篇
  1994年   38篇
  1993年   34篇
  1992年   21篇
  1991年   11篇
  1990年   19篇
  1989年   21篇
  1988年   24篇
  1987年   24篇
  1986年   18篇
  1985年   14篇
  1984年   7篇
  1983年   10篇
  1982年   14篇
  1981年   11篇
  1979年   11篇
  1978年   8篇
  1977年   3篇
  1976年   4篇
  1973年   5篇
  1955年   2篇
排序方式: 共有5091条查询结果,搜索用时 167 毫秒
91.
Optics clustered to output unique solutions (OCTOPUS) is a microscopy platform that combines single molecule and ensemble imaging methodologies. A novel aspect of OCTOPUS is its laser excitation system, which consists of a central core of interlocked continuous wave and pulsed laser sources, launched into optical fibres and linked via laser combiners. Fibres are plugged into wall-mounted patch panels that reach microscopy end-stations in adjacent rooms. This allows multiple tailor-made combinations of laser colours and time characteristics to be shared by different end-stations minimising the need for laser duplications. This setup brings significant benefits in terms of cost effectiveness, ease of operation, and user safety. The modular nature of OCTOPUS also facilitates the addition of new techniques as required, allowing the use of existing lasers in new microscopes while retaining the ability to run the established parts of the facility. To date, techniques interlinked are multi-photon/multicolour confocal fluorescence lifetime imaging for several modalities of fluorescence resonance energy transfer (FRET) and time-resolved anisotropy, total internal reflection fluorescence, single molecule imaging of single pair FRET, single molecule fluorescence polarisation, particle tracking, and optical tweezers. Here, we use a well-studied system, the epidermal growth factor receptor network, to illustrate how OCTOPUS can aid in the investigation of complex biological phenomena.  相似文献   
92.
This pilot study examines the use of Camtasia-enhanced lessons to supplement distance education provided to medical laboratory science students. More programs of study are available as distance learning opportunities, creating challenges to find better ways to present material. Librarians provided technical expertise necessary to produce a Camtasia video. This helped instructors prepare engaging lectures for phlebotomy to supplement the PowerPoint presentations and self-directed lessons provided in previous courses. Medical laboratory science faculty collaborated with library staff to produce videos that demonstrate proper phlebotomy technique using training personnel and faculty, whom the students eventually interact with in the clinical environment.  相似文献   
93.
Current advancements in pervasive technologies allow users to create and share an increasing amount of whereabouts data. Thus, some rich datasets on human mobility are becoming available on the web. In this paper we extracted approximately 790,000 mobility traces from a web-based repository of GPS tracks—the Nokia Sports Tracker Service. Using data mining mechanisms, we show that this data can be analyzed to uncover daily routines and interesting schemes in the use of public spaces. We first show that our approach supports large-scale analysis of people’s whereabouts by comparing behavioral patterns across cities. Then, using Kernel Density Estimation, we present a mechanism to identify popular sport areas in individual cities. This kind of analysis allows us to highlight human-centered geographies that can support a wide range of applications ranging from location-based services to urban planning.  相似文献   
94.
The muscular dystrophies are a large and heterogeneous group of neuromuscular disorders that can be classified according to the mode of inheritance, the clinical phenotype and the molecular defect. To better understand the pathological mechanisms of dysferlin myopathy we compared the protein-expression pattern in the muscle biopsies of six patients with this disease with six patients with limb girdle muscular dystrophy 2A, five with facioscapulohumeral dystrophy and six normal control subjects. To investigate differences in the expression levels of skeletal muscle proteins we used 2-DE and MS. Western blot or immunohistochemistry confirmed relevant results. The study showed specific increase expression of proteins involved in fast-to-slow fiber type conversion (ankyrin repeat protein 2), type I predominance (phosphorylated forms of slow troponin T), sarcomere stabilization (actinin-associated LIM protein), protein ubiquitination (TRIM 72) and skeletal muscle differentiation (Rho-GDP-dissociation inhibitor ly-GDI) in dysferlin myopathy. As anticipated, we also found differential expression of proteins common to all the muscular dystrophies studied. This comparative proteomic analysis suggests that in dysferlin myopathy (i) the type I fiber predominance is an active process of fiber type conversion rather than a selective loss of type II fibers and (ii) the dysregulation of proteins involved in muscle differentiation further confirms the role of dysferlin in this process.  相似文献   
95.
Metal halide perovskite (MHP) semiconductors have driven a revolution in optoelectronic technologies over the last decade, in particular for high-efficiency photovoltaic applications. Low-dimensional MHPs presenting electronic confinement have promising additional prospects in light emission and quantum technologies. However, the optimisation of such applications requires a comprehensive understanding of the nature of charge carriers and their transport mechanisms. This study employs a combination of ultrafast optical and terahertz spectroscopy to investigate phonon energies, charge-carrier mobilities, and exciton formation in 2D (PEA)2PbI4 and (BA)2PbI4 (where PEA is phenylethylammonium and BA is butylammonium). Temperature-dependent measurements of free charge-carrier mobilities reveal band transport in these strongly confined semiconductors, with surprisingly high in-plane mobilities. Enhanced charge-phonon coupling is shown to reduce charge-carrier mobilities in (BA)2PbI4 with respect to (PEA)2PbI4. Exciton and free charge-carrier dynamics are disentangled by simultaneous monitoring of transient absorption and THz photoconductivity. A sustained free charge-carrier population is observed, surpassing the Saha equation predictions even at low temperature. These findings provide new insights into the temperature-dependent interplay of exciton and free-carrier populations in 2D MHPs. Furthermore, such sustained free charge-carrier population and high mobilities demonstrate the potential of these semiconductors for applications such as solar cells, transistors, and electrically driven light sources.  相似文献   
96.
Materials with controllable multifunctional abilities for optical imaging (OI) and magnetic resonant imaging (MRI) that also can be used in photodynamic therapy are very interesting for future applications. Mesoporous TiO2 sub‐micrometer particles are doped with gadolinium to improve photoluminescence functionality and spin relaxation for MRI, with the added benefit of enhanced generation of reactive oxygen species (ROS). The Gd‐doped TiO2 exhibits red emission at 637 nm that is beneficial for OI and significantly improves MRI relaxation times, with a beneficial decrease in spin–lattice and spin–spin relaxation times. Density functional theory calculations show that Gd3+ ions introduce impurity energy levels inside the bandgap of anatase TiO2, and also create dipoles that are beneficial for charge separation and decreased electron–hole recombination in the doped lattice. The Gd‐doped TiO2 nanobeads (NBs) show enhanced ability for ROS monitored via ?OH radical photogeneration, in comparison with undoped TiO2 nanobeads and TiO2 P25, for Gd‐doping up to 10%. Cellular internalization and biocompatibility of TiO2@x Gd NBs are tested in vitro on MG‐63 human osteosarcoma cells, showing full biocompatibility. After photoactivation of the particles, anticancer trace by means of ROS photogeneration is observed just after 3 min irradiation.  相似文献   
97.
Organizing DNA origami building blocks into higher order structures is essential for fabrication of large structurally and functionally diverse devices and molecular machines. Unfortunately, the yields of origami building block attachment reactions are typically not sufficient to allow programed assembly of DNA devices made from more than a few origami building blocks. To investigate possible reasons for these low yields, a detailed single‐molecule fluorescence study of the dynamics of rectangular origami dimerization and origami dimer dissociation reactions is conducted. Reactions kinetics and yields are investigated at different origami and ion concentrations, for different ion types, for different lengths of bridging strands, and for the “sticky end” and “weaving welding” attachment techniques. Dimerization yields are never higher than 86%, which is typical for such systems. Analysis of the dynamic data shows that the low yield cannot be explained by thermodynamic instability or structural imperfections of the origami constructs. Atomic force microscopy and gel electrophoresis evidence reveal self‐dimerization of the origami monomers, likely via blunt‐end interactions made possible by the presence of bridging strands. It is suggested that this mechanism is the major factor that inhibits correct dimerization and means to overcome it are discussed.  相似文献   
98.
The sensitive direct detection of biomolecules is demonstrated by a colorimetric plasmonic biosensor utilizing the surface colors of plasmonic metasurfaces named Ag nanodome arrays. The Ag nanodome arrays consist of polystyrene bead monolayers coated with Ag thin films whose surface colors are optimized by changing the size of the polystyrene beads. The bulk refractive index sensitivity of colorimetric detection evaluated using the hue angle is 590° RIU−1 (RIU: refractive index unit). For selected geometry, the refractive index resolution (5.0 × 10−5 RIU) obtained by colorimetric detection surpasses that of spectroscopic detection evaluated via the dip wavelength in the reflection spectrum. The numerical simulations predict an enhanced sensing performance when the hue angle of the surface colors of the Ag nanodome arrays changes from 300° to 200°, corresponding to changes in the dip wavelength from 570 to 600 nm in the reflection spectra. Furthermore, the detection sensitivity of the biomolecules is characterized using a direct IgG immunoassay format. The detection limit of the IgG concentration is as low as 134 pM using simple colorimetric detection. The feasibility of sensitive label-free immunoassays using a colorimetric plasmonic biosensor is expected to accelerate the development of highly sensitive and reliable smartphone-based plasmonic biosensors.  相似文献   
99.
Eddy covariance (EC) measurements have greatly advanced our knowledge of carbon exchange in terrestrial ecosystems. However, appropriate techniques are required to upscale these spatially discrete findings globally. Satellite remote sensing provides unique opportunities in this respect, but remote sensing of the photosynthetic light-use efficiency (ε), one of the key components of Gross Primary Production, is challenging. Some progress has been made in recent years using the photochemical reflectance index, a narrow waveband index centered at 531 and 570 nm. The high sensitivity of this index to various extraneous effects such as canopy structure, and the view observer geometry has so far prevented its use at landscape and global scales. One critical aspect of upscaling PRI is the development of generic algorithms to account for structural differences in vegetation. Building on previous work, this study compares the differences in the PRI: ? relationship between a coastal Douglas-fir forest located on Vancouver Island, British Columbia, and a mature Aspen stand located in central Saskatchewan, Canada. Using continuous, tower-based observations acquired from an automated multi-angular spectro-radiometer (AMSPEC II) installed at each site, we demonstrate that PRI can be used to measure ? throughout the vegetation season at the DF-49 stand (r2 = 0.91, p < 0.00) as well as the deciduous site (r2 = 0.88, p < 0.00). It is further shown that this PRI signal can be also observed from space at both sites using daily observations from the Moderate Resolution Imaging Spectro-radiometer (MODIS) and a multi-angular implementation of atmospheric correction (MAIAC) (r2 = 0.54 DF-49; r2 = 0.63 SOA; p < 0.00). By implementing a simple hillshade model derived from airborne light detection and ranging (LiDAR) to approximate canopy shadow fractions (αs), it is further demonstrated that the differences observed in the relationship between PRI and ε at DF-49 and SOA can be attributed largely to differences in αs. The findings of this study suggest that algorithms used to separate physiological from extraneous effects in PRI reflectance may be more broadly applicable and portable across these two climatically and structurally different biome types, when the differences in canopy structure are known.  相似文献   
100.
This paper describes a user study on the benefits and drawbacks of simultaneous spatial sounds in auditory interfaces for visually impaired and blind computer users. Two different auditory interfaces in spatial and non-spatial condition were proposed to represent the hierarchical menu structure of a simple word processing application. In the horizontal interface, the sound sources or the menu items were located in the horizontal plane on a virtual ring surrounding the user’s head, while the sound sources in the vertical interface were aligned one above the other in front of the user. In the vertical interface, the central pitch of the sound sources at different elevations was changed in order to improve the otherwise relatively low localization performance in the vertical dimension. The interaction with the interfaces was based on a standard computer keyboard for input and a pair of studio headphones for output. Twelve blind or visually impaired test subjects were asked to perform ten different word processing tasks within four experiment conditions. Task completion times, navigation performance, overall satisfaction and cognitive workload were evaluated. The initial hypothesis, i.e. that the spatial auditory interfaces with multiple simultaneous sounds should prove to be faster and more efficient than non-spatial ones, was not confirmed. On the contrary—spatial auditory interfaces proved to be significantly slower due to the high cognitive workload and temporal demand. The majority of users did in fact finish tasks with less navigation and key pressing; however, they required much more time. They reported the spatial auditory interfaces to be hard to use for a longer period of time due to the high temporal and mental demand, especially with regards to the comprehension of multiple simultaneous sounds. The comparison between the horizontal and vertical interface showed no significant differences between the two. It is important to point out that all participants were novice users of the system; therefore it is possible that the overall performance could change with a more extensive use of the interfaces and an increased number of trials or experiments sets. Our interviews with visually impaired and blind computer users showed that they are used to sharing their auditory channel in order to perform multiple simultaneous tasks such as listening to the radio, talking to somebody, using the computer, etc. As the perception of multiple simultaneous sounds requires the entire capacity of the auditory channel and total concentration of the listener, it does therefore not enable such multitasking.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号