首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144712篇
  免费   12396篇
  国内免费   6183篇
电工技术   8318篇
技术理论   11篇
综合类   9052篇
化学工业   24421篇
金属工艺   7999篇
机械仪表   9370篇
建筑科学   11961篇
矿业工程   3833篇
能源动力   4059篇
轻工业   8979篇
水利工程   2805篇
石油天然气   7528篇
武器工业   1098篇
无线电   17698篇
一般工业技术   17642篇
冶金工业   7278篇
原子能技术   1525篇
自动化技术   19714篇
  2024年   598篇
  2023年   2388篇
  2022年   4394篇
  2021年   5852篇
  2020年   4449篇
  2019年   3691篇
  2018年   3992篇
  2017年   4623篇
  2016年   4210篇
  2015年   5667篇
  2014年   7369篇
  2013年   9012篇
  2012年   9466篇
  2011年   10212篇
  2010年   9042篇
  2009年   8752篇
  2008年   8416篇
  2007年   7899篇
  2006年   7843篇
  2005年   6700篇
  2004年   4428篇
  2003年   3789篇
  2002年   3437篇
  2001年   3149篇
  2000年   3233篇
  1999年   3492篇
  1998年   3157篇
  1997年   2521篇
  1996年   2341篇
  1995年   1985篇
  1994年   1649篇
  1993年   1226篇
  1992年   889篇
  1991年   752篇
  1990年   549篇
  1989年   482篇
  1988年   410篇
  1987年   230篇
  1986年   217篇
  1985年   142篇
  1984年   120篇
  1983年   90篇
  1982年   81篇
  1981年   69篇
  1980年   58篇
  1979年   44篇
  1978年   15篇
  1977年   36篇
  1976年   20篇
  1975年   17篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
102.
The vast chemical and structural tunability of metal–organic frameworks (MOFs) are beginning to be harnessed as functional supports for catalytic nanoparticles spanning a range of applications. However, a lack of straightforward methods for producing nanoparticle-encapsulated MOFs as efficient heterogeneous catalysts limits their usage. Herein, a mixed-metal MOF, NiMg-MOF-74, is utilized as a template to disperse small Ni nanoclusters throughout the parent MOF. By exploiting the difference in Ni O and Mg O coordination bond strength, Ni2+ is selectively reduced to form highly dispersed Ni nanoclusters constrained by the parent MOF pore diameter, while Mg2+ remains coordinated in the framework. By varying the ratio of Ni to Mg in the parent MOF, accessible surface area and crystallinity can be tuned upon thermal treatment, influencing CO2 adsorption capacity and hydrogenation selectivity. The resulting Ni nanoclusters prove to be an active catalyst for CO2 methanation and are examined using extended X-ray absorption fine structure and X-ray photoelectron spectroscopy. By preserving a segment of the Mg2+-containing MOF framework, the composite system retains a portion of its CO2 adsorption capacity while continuing to deliver catalytic activity. The approach is thus critical for designing materials that can bridge the gap between carbon capture and CO2 utilization.  相似文献   
103.
This work presents an engineering method for optimizing structures made of bars, beams, plates, or a combination of those components. Corresponding problems involve both continuous (size) and discrete (topology) variables. Using a branched multipoint approximate function, which involves such mixed variables, a series of sequential approximate problems are constructed to make the primal problem explicit. To solve the approximate problems, genetic algorithm (GA) is utilized to optimize discrete variables, and when calculating individual fitness values in GA, a second-level approximate problem only involving retained continuous variables is built to optimize continuous variables. The solution to the second-level approximate problem can be easily obtained with dual methods. Structural analyses are only needed before improving the branched approximate functions in the iteration cycles. The method aims at optimal design of discrete structures consisting of bars, beams, plates, or other components. Numerical examples are given to illustrate its effectiveness, including frame topology optimization, layout optimization of stiffeners modeled with beams or shells, concurrent layout optimization of beam and shell components, and an application in a microsatellite structure. Optimization results show that the number of structural analyses is dramatically decreased when compared with pure GA while even comparable to pure sizing optimization.  相似文献   
104.
This paper investigates the general decay synchronization and general decay H∞ synchronization problems of multi-weighted coupled reaction-diffusion  相似文献   
105.
The in-situ fabrication of an electron-blocking layer between the Ba-containing anode and the ceria-based electrolyte is an effective approach in suppressing the internal electronic leakage in ceria-based solid oxide fuel cell (SOFC). To improve the thickness of the electron-blocking layer and to research the effect of the layer thickness on the improvement of SOFC, a Ba-containing compound (0.6NiO-0.4BaZr0.1Ce0.7Y0.2O3-δ) modified by Y stabilized zirconia (YSZ) was employed as a composite anode in this research. SEM analyses demonstrated that the thickness of the interlayer can be simply controlled by regulating the proportion of YSZ at anode. The in-situ formed interlayer in the cell with the anode modified by 20?mol% YSZ possesses a thickness of 0.9?µm which is more suitable for the cell achieving an enhanced performance.  相似文献   
106.
Hybrid organic–inorganic perovskites (HOIPs), in particular 3D HOIPs, have demonstrated remarkable properties, including ultralong charge‐carrier diffusion lengths, high dielectric constants, low trap densities, tunable absorption and emission wavelengths, strong spin–orbit coupling, and large Rashba splitting. These superior properties have generated intensive research interest in HOIPs for high‐performance optoelectronics and spintronics. Here, 3D hybrid organic–inorganic perovskites that implant chirality through introducing the chiral methylammonium cation are demonstrated. Based on structural optimization, phonon spectra, formation energy, and ab initio molecular dynamics simulations, it is found that the chirality of the chiral cations can be successfully transferred to the framework of 3D HOIPs, and the resulting 3D chiral HOIPs are both kinetically and thermodynamically stable. Combining chirality with the impressive optical, electrical, and spintronic properties of 3D perovskites, 3D chiral perovskites is of great interest in the fields of piezoelectricity, pyroelectricity, ferroelectricity, topological quantum engineering, circularly polarized optoelectronics, and spintronics.  相似文献   
107.
A facile and effective method was proposed to prepare the molecularly imprinted fluorescence sensor with carbon quantum dots, which were modified vinyl groups by acrylic acid on the surface. The obtained fluorescence composite material was investigated by transmission electron microscope and Fourier transform infrared spectra. After the experimental conditions were optimized, a linear range of 1.0–60 μmol L−1 was obtained and the detection limit was 0.17 μmol L−1. The novel fluorescence sensor can be successfully used to detect tetracycline in real samples. This study provides a convenient strategy for selective recognition and rapid detection of tetracycline in the complex environment.  相似文献   
108.
In this study, yttrium iron garnet co-doped with Zn and Zr atoms with a chemical formula Y3ZnxZrxFe(5−2x)O12 (x = 0.0-0.3) has been successfully prepared by the solid-state reaction method. The effects of doping concentration on the microstructure, crystal structure, magnetic properties, and dielectric properties of Y3ZnxZrxFe(5−2x)O12 were investigated. The microstructure analysis indicates that co-doping of YIG with Zn and Zr can effectively reduce the grain size of the ceramic. The crystal structure results reveal that the doping concentration of Zn–Zr has substantial influence on the lattice parameters of YIG, such as, increases the lattice constant, crystal cell size, and interplanar spacing. However, the second phase of ZrO2 appears once ≥ 0.15. Additionally, the dielectric properties of YIG ferrite can be regulated using this Zn–Zr co-doping method. Zn–Zr co-doping can improve the dielectric stability and reduce the dielectric loss at high temperature. The magnetization measurement shows that the saturation magnetization is stabilized at x < 0.15, and the magnetic loss is decreased with the increase in the doping concentration. Overall, the findings show that the ceramic with x = 0.1 exhibits better properties included high saturation magnetization (24.607 emu/g), low magnetic loss (0.0025 @ 1 MHz), and relatively low dielectric loss (496 @ 400°C).  相似文献   
109.
Three kinds of ethylene-octene copolymers (POE) were melt-blended with high-density polyethylene (PE-HD) in different proportions. Detailed characterizations were conducted to analyze their structural differences of POE and its effects in toughening PE-HD. The higher molecular weight POE can improve the toughness of PE-HD. 60:40 PE-HD/POE is elongated to break up to 700% while impact strength is 84.7 kJ/m2 at −30°C, which is 21-fold of PE-HD. In the brittle to ductile transition (BDT) during impact, the fracture mechanism changes from the crazing mode to the shear yield-plastic deformation mode. The BDT temperature decreases as the POE molecular weight and its content increase. The interface strength in tension is estimated to access their effects. The Boltzmann-type models were successfully extended to describe the typical S-shaped curves in BDT of notched impact strength vs POE content or temperature. The supplementary decay model is suggested for the attenuation in toughening. Transition map in impact is proposed to select the use range of composition (c ) and temperature (T ) for high toughness. The curves are converted into 3D graph of T -c -impact strength for illustrating their coupling-separate effects, and further into the contour map of impact strength in T -c space for finding their partial equivalence.  相似文献   
110.
The {100} facet of single-crystalline TiO2(B) is an ideal platform for inserting Li ions, but it is hard to be obtained due to its high surface energy. Here, the single-crystalline TiO2(B) nanobelts from H2Ti3O7 with nearly 70% {100} facets exposed are synthesized, which significantly enhances Li-storage capacity. The first-principle calculations demonstrate an ab in-plane 2D diffusion through the exposed {100} facets. As a consequence, the nanobelts can significantly accommodate Li ions in LiTiO2 formula with specific capacity up to 335 mAh g−1, which is in good agreement with the electrochemical characterizations. Coating with conductive and protective poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), the cut-off discharge voltage is as low as 0.5 V, leading to a capacity of 160.7 mAh g−1 after 1500 cycles with a retention rate of 66% at 1C. This work provides a practical strategy to increase the Li-ion capacity and cycle stability by tailoring the crystal orientation and nanostructures.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号