首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   408篇
  免费   26篇
电工技术   2篇
化学工业   189篇
金属工艺   7篇
机械仪表   9篇
建筑科学   14篇
矿业工程   2篇
能源动力   16篇
轻工业   80篇
水利工程   1篇
石油天然气   1篇
无线电   7篇
一般工业技术   55篇
冶金工业   11篇
原子能技术   1篇
自动化技术   39篇
  2023年   1篇
  2022年   22篇
  2021年   48篇
  2020年   14篇
  2019年   11篇
  2018年   11篇
  2017年   12篇
  2016年   18篇
  2015年   12篇
  2014年   28篇
  2013年   24篇
  2012年   30篇
  2011年   35篇
  2010年   17篇
  2009年   20篇
  2008年   22篇
  2007年   11篇
  2006年   16篇
  2005年   18篇
  2004年   14篇
  2003年   8篇
  2002年   6篇
  2001年   3篇
  2000年   3篇
  1999年   5篇
  1998年   2篇
  1997年   4篇
  1996年   3篇
  1995年   3篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1983年   2篇
  1980年   1篇
  1979年   1篇
  1966年   1篇
  1963年   1篇
  1926年   1篇
排序方式: 共有434条查询结果,搜索用时 343 毫秒
61.
Toxic organic pollutants in the aquatic environment cause severe threats to both humans and the global environment. Thus, the development of robust strategies for detection and removal of these organic pollutants is essential. For this purpose, a multifunctional and recyclable membrane by intercalating gold nanoparticles and graphitic carbon nitride into graphene oxide (GNPs/g‐C3N4/GO) is fabricated. The membranes exhibit not only superior surface enhanced Raman scattering (SERS) activity attributed to high preconcentration ability to analytes through π–π and electrostatic interactions, but also excellent catalytic activity due to the enhanced electron–hole separation efficiency. These outstanding properties allow the membrane to be used for highly sensitive detection of rhodamine 6G with a limit of detection of 5.0 × 10?14m and self‐cleaning by photocatalytic degradation of the adsorbed analytes into inorganic small molecules, thus achieving recyclable SERS application. Furthermore, the excellent SERS activity of the membrane is demonstrated by detection of 4‐chlorophenol at less than nanomolar level and no significant SERS or catalytic activity loss was observed when reusability is tested. These results suggest that the GNPs/g‐C3N4/GO membrane provides a new strategy for eliminating traditional, single‐use SERS substrates, and expands practical SERS application to simultaneous detection and removal of environmental pollutants.  相似文献   
62.
63.
64.
65.
66.
The phylogeny of the genus Paphiopedilum based on the plastome is consistent with morphological analysis. However, to date, none of the analyzed nuclear markers has confirmed this. Topology incongruence among the trees of different nuclear markers concerns entire sections of the subgenus Paphiopedilum. The low-copy nuclear protein-coding gene PHYC was obtained for 22 species representing all sections and subgenera of Paphiopedilum. The nuclear-based phylogeny is supported by morphological characteristics and plastid data analysis. We assumed that an incongruence in nuclear gene trees is caused by ancestral homoploid hybridization. We present a model for inferring the phylogeny of the species despite the incongruence of the different tree topologies. Our analysis, based on six low-copy nuclear genes, is congruent with plastome phylogeny and has been confirmed by phylogenetic network analysis.  相似文献   
67.
Considerable evidence accumulated over the past decade supports that telocytes (TCs)/CD34+ stromal cells represent an exclusive type of interstitial cells identifiable by transmission electron microscopy (TEM) or immunohistochemistry in various organs of the human body, including the skin. By means of their characteristic cellular extensions (telopodes), dermal TCs are arranged in networks intermingled with a multitude of neighboring cells and, hence, they are thought to contribute to skin homeostasis through both intercellular contacts and releasing extracellular vesicles. In this context, fibrotic skin lesions from patients with systemic sclerosis (SSc, scleroderma) appear to be characterized by a disruption of the dermal network of TCs, which has been ascribed to either cell degenerative processes or possible transformation into profibrotic myofibroblasts. In the present study, we utilized the well-established mouse model of bleomycin-induced scleroderma to gain further insights into the TC alterations found in cutaneous fibrosis. CD34 immunofluorescence revealed a severe impairment in the dermal network of TCs/CD34+ stromal cells in bleomycin-treated mice. CD31/CD34 double immunofluorescence confirmed that CD31/CD34+ TC counts were greatly reduced in the skin of bleomycin-treated mice compared with control mice. Ultrastructural signs of TC injury were detected in the skin of bleomycin-treated mice by TEM. The analyses of skin samples from mice treated with bleomycin for different times by either TEM or double immunostaining and immunoblotting for the CD34/α-SMA antigens collectively suggested that, although a few TCs may transition to α-SMA+ myofibroblasts in the early disease stage, most of these cells rather undergo degeneration, and then are lost. Taken together, our data demonstrate that TC changes in the skin of bleomycin-treated mice mimic very closely those observed in human SSc skin, which makes this experimental model a suitable tool to (i) unravel the pathological mechanisms underlying TC damage and (ii) clarify the possible contribution of the TC loss to the development/progression of dermal fibrosis. In perspective, these findings may have important implications in the field of skin regenerative medicine.  相似文献   
68.
Two series of polyesters containing phenoxaphosphine rings and several halogens were synthesized by low-temperature solution polycondensation in the presence of triethylamine. One series, containing halogens only in the bisphenol moiety, was obtained from 2,8-dichloroformyl-10-phenylphenoxaphosphine-10-oxide and chlorinated bisphenol. In the second series, halogens belonged both to bisphenol and diacid dichlorides. For the last series, 2,8-dichloroformyl-10-(4-bromophenyl)phenoxaphosphine-10-oxide was prepared as a new monomer. All resulting polyesters were characterized by elemental analysis, reduced viscosity, IR and 1H NMR spectroscopy, and thermogravimetric analysis. These polymers began to lose weight at about 400°C in air being seen as self-extinguishing ones.  相似文献   
69.
70.
A novel method for the preparation of CuS nanoparticles based on the fast nucleation of the sulphide has been developed. The particles have been synthesized by reaction of thioacetic acid with water and copper carboxylates (acetate, propionate) in the corresponding carboxylic acid (acetic, propionic) as a solvent. The use of carboxylic acids presents several advantages: (i) the hydrolysis of the C-S bond is favoured thus producing a fast CuS supersaturation and a high nucleation rate; (ii) the mobility of the precursor molecules is limited so that nucleation events are favoured with respect to particle growth; (iii) the low dielectric constant of the medium stabilises the nanoparticles dispersion by reducing the critical coagulation concentration. The prepared nanoparticles were investigated by UV-Vis spectroscopy, X-ray photoelectron spectroscopy, atomic force microscopy and dynamic light scattering. The nanoparticle suspensions are clear and characterized by a blue-shifted adsorption edge with respect to bulk CuS. Light scattering measurements performed on acetic acid suspensions evidence the formation of monodispersed nanoparticles with an average diameter of about 5 nm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号