首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   984篇
  免费   36篇
  国内免费   4篇
电工技术   9篇
综合类   2篇
化学工业   173篇
金属工艺   37篇
机械仪表   39篇
建筑科学   13篇
矿业工程   5篇
能源动力   44篇
轻工业   32篇
水利工程   12篇
石油天然气   3篇
无线电   90篇
一般工业技术   215篇
冶金工业   178篇
原子能技术   16篇
自动化技术   156篇
  2023年   9篇
  2022年   31篇
  2021年   46篇
  2020年   26篇
  2019年   34篇
  2018年   52篇
  2017年   51篇
  2016年   31篇
  2015年   18篇
  2014年   36篇
  2013年   65篇
  2012年   41篇
  2011年   47篇
  2010年   37篇
  2009年   42篇
  2008年   43篇
  2007年   30篇
  2006年   32篇
  2005年   21篇
  2004年   25篇
  2003年   23篇
  2002年   35篇
  2001年   19篇
  2000年   19篇
  1999年   20篇
  1998年   40篇
  1997年   24篇
  1996年   15篇
  1995年   13篇
  1994年   9篇
  1993年   14篇
  1992年   8篇
  1991年   4篇
  1990年   5篇
  1989年   3篇
  1988年   7篇
  1987年   5篇
  1986年   4篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   6篇
  1981年   2篇
  1980年   5篇
  1979年   3篇
  1978年   2篇
  1977年   3篇
  1976年   4篇
  1973年   2篇
  1957年   1篇
排序方式: 共有1024条查询结果,搜索用时 15 毫秒
31.
32.
This study aimed at demonstrating the effects of fermentation time (24, 48, 72, 96, and 120 h) and water activity (0.943, 0.970, and 0.985) on the production of cellulolytic enzymes by solid-state fermentation of purple mombin (Spondias purpurea L.) residue using Aspergillus niger. The fermentation was carried out at 35°C and the enzyme production was measured as endoglucanase and total cellulose activities. The optimum condition for endoglucanase was water activity 0.974 and 93.8 h of fermentation, reaching a production of 3.21 U/g of residue; whereas for total cellulase it was 0.958 and 79.4 h achieving 12.1 U/g of residue. Fermentation time had a greater effect on the endoglucanase activity, while water activity had a more significant influence on the total cellulase activity. Endoglucanase had optimum activity at temperature of 50°C and pH 5.0. Although cellulase total optimum activity was also at pH 5.0, the maximum activity was at 60°C.  相似文献   
33.
Thin plates of high-strength steel are frequently being used both in civil and military ballistic protection systems. The choice of alloy is then a function of application, ballistic performance, weight and price. In this study the perforation resistance of five different high-strength steels has been determined and compared against each other. The considered alloys are Weldox 500E, Weldox 700E, Hardox 400, Domex Protect 500 and Armox 560T. The yield stress for Armox 560T is about three times the yield stress for Weldox 500E, while the opposite yields for the ductility. To certify the perforation resistance of the various targets, two different ballistic protection classes according to the European norm EN1063 have been considered. These are BR6 (7.62 mm Ball ammunition) and BR7 (7.62 mm AP ammunition), where the impact velocity of the bullet is about 830 m/s in both. Perforation tests have been carried out using adjusted ammunition to determine the ballistic limit of the various steels. In the tests, a target thickness of 6 mm and 6 + 6 = 12 mm was used for protection class BR6 and BR7, respectively. A material test programme was conducted for all steels to calibrate a modified Johnson–Cook constitutive relation and the Cockcroft–Latham fracture criterion, while material data for the bullets mainly were taken from the literature. Finally, results from 2D non-linear FE simulations with detailed models of the bullets are presented and the different findings are compared against each other. As will be shown, good agreement between the FE simulations and experimental data for the AP bullets is in general obtained, while it was difficult to get reliable FE results using the Lagrangian formulation of LS-DYNA for the soft core Ball bullet.  相似文献   
34.
To understand how hardness, the key design parameter for applications of brittle solids such as glass concerning contact deformation, is affected by loading rate variation, nanoindentation with a Berkovich tip was used to measure the nanohardness of a 330-μm-thick soda-lime-silica glass as a function of loading rate (1 to 1000 mN·s−1). The results showed for the very first time that, with variations in the loading rate, there was a 6 to 9 pct increase in the nanohardness of glass up to a threshold loading rate (TLR), whereafter it did not appreciably increase with further increase in loading rate. Further, the nanohardness data showed an indentation size effect (ISE) that obeyed the Meyer’s law. These observations were explained in terms of a strong shear stress component developed just beneath the nanoindenter and the related shear-induced deformation processes at local microstructural scale weak links. The significant or insignificant presence of shear-induced serrations in load depth plots and corresponding scanning electron microscopic evidence of a strong or mild presence of shear deformation bands in and around the nanoindentation cavity supported such a rationalization. Finally, a qualitative picture was developed for different deformation processes induced at various loading rates in glass.  相似文献   
35.
Tailoring the local flow field around a fin can substantially enhance the forced convection heat transfer from a conventional heat sink. A fin is set into oscillation leading to rupture of the thermal boundary layer developed on either side of the fin. This enhancement in heat transfer is demonstrated through an increase in the time-averaged Nusselt Number (Nu) on the fin surfaces. Nu has been found to be strongly dependent on the flow Reynolds Number (Re), the frequency and amplitude of the fin oscillations. A threshold amplitude and frequency is identified beyond which Nu improvements are observed for fixed Re.  相似文献   
36.
The success of the three stage Indian nuclear energy program is inter-linked with the establishment of an efficient closed fuel cycle approach with recycling of both fissile and fertile components of the spent fuel to appropriate reactor systems. The Indian reprocessing journey was started way back in 1964 with the commissioning of a plant based on PUREX technology to reprocess aluminum clad natural uranium spent fuel from the research reactor CIRUS. After achieving the basic skills, a power reactor reprocessing facility was built to reprocess spent fuel from power reactors. Adequate design and operating experience was gained from these two plants for mastering the reprocessing technology. The first plant, being the maiden venture, based on indigenous technology had to undergo many modifications during its operation and finally needed refurbishment for continued operation. Decommissioning and decontamination of this plant was carried out meticulously to allow unrestricted access to the cells for fresh installation. A third plant was built for power reactor spent fuel reprocessing to serve as a design standard for future plants with the involvement of industry. Over the years, spent fuel reprocessing based on PUREX technology has reached a matured status and can be safely deployed to meet the additional reprocessing requirements to cater to the expanding nuclear energy program. Side by side with the developments in the spent natural uranium fuel reprocessing, irradiated thoria reprocessing is also perused to develop THOREX into a robust process. The additional challenges in this domain are being addressed to evolve appropriate technological solutions. Advancements in the field of science and technology are being absorbed to meet the challenges of higher recovery combined with reduced exposure and environmental discharges.  相似文献   
37.
The results of an experimental investigation on scour of noncohesive sediment beds (uniform and nonuniform sediments) downstream of an apron due to a submerged horizontal jet issuing from a sluice opening are presented. Attempts are made to explain the similarity existing in the scour process and profiles (including dune in the downstream of the scour hole). The scour profiles at different times follow a particular geometrical similarity and can be expressed by the combination of two polynomials. Using experimental scour depth at different times, the time variation of scour depth is scaled by an exponential law, where time scale increases linearly with densimetric Froude number. The equilibrium scour depth, related to the sediment size relative to the sluice opening, decreases with increase in sediment size and sluice opening. On the other hand, the equilibrium scour depth increases with increase in densimetric Froude number. The variation of equilibrium scour depth with tailwater depth indicates a critical tailwater depth corresponding to a minimum equilibrium scour depth. The effect of sediment gradation on scour depth is pronounced for nonuniform sediments, which reduce scour depth significantly due to formation of an armor layer, and therefore prompted study of the reduction of scour depth by a launching apron placed downstream of the rigid apron. The results show that the average reduction of scour depth by placing a launching apron was 39%, having a maximum of 57.3% and a minimum of 16.2%. The characteristic parameters affecting maximum equilibrium scour depth are identified based on the physical reasoning and dimensional analysis. Equation of maximum equilibrium scour depth obtained empirically agrees well with the experimental data.  相似文献   
38.
Thermal conductivity of superconducting (Bi,Pb)2223 pellet in the temperature range 20–170 K is reported. Electronic contribution to thermal conductivity in the normal state is estimated to be 25%. Considering both phonon and phonon + electron approach, we attempted to examine the observed nature of the temperature dependence of thermal conductivity. Our analysis strongly supports the role of phonons as well as electrons in the origin of the thermal conductivity peak in the superconducting state. Some of the microscopic quantities evaluated from the best-fit parameters obtained from phonon + electron approach give reasonable values.  相似文献   
39.
The temperature dependence of the thermoelectric power of calcium substituted YBa2–x Ca x Cu3O7– pellets with 0x1.5 is presented between 60 K and 300 K. A metal–insulator transition was reported earlier by us in this system and was attributed to the ionic size-dependent localization effect. While the sign of thermoelectric power of all the calcium substituted samples was found to be positive, its magnitude increases significantly with calcium content in YBCO. The normal state thermoelectric power data of substituted YBa2–x Ca x Cu3O7– (0x1.5) are discussed in light of a two-band model originally proposed by Gottwick et al. for heavy fermion systems and later modified by Forro et al.  相似文献   
40.
J. Dey  D. Das 《Acta Mechanica》1998,128(3-4):253-258
Summary It is found that in a ribbon-excited Blasius boundary layer, a wave Reynolds number defined here on the basis of phase speed and wave number of the disturbance remains nearly independent of the local mean flow Reynolds number, and so also of the streamwise distance, under the parallel flow approximation. Consequently, a limited similarity feature of the Orr-Sommerfeld equation has been found to exist for the streamfunction in the outer region of the boundary layer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号