首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84987篇
  免费   1026篇
  国内免费   407篇
电工技术   778篇
综合类   2316篇
化学工业   11743篇
金属工艺   4799篇
机械仪表   3045篇
建筑科学   2195篇
矿业工程   563篇
能源动力   1151篇
轻工业   3833篇
水利工程   1278篇
石油天然气   348篇
无线电   9372篇
一般工业技术   16475篇
冶金工业   2754篇
原子能技术   267篇
自动化技术   25503篇
  2023年   25篇
  2022年   94篇
  2021年   89篇
  2020年   52篇
  2019年   61篇
  2018年   14489篇
  2017年   13403篇
  2016年   10006篇
  2015年   644篇
  2014年   293篇
  2013年   292篇
  2012年   3219篇
  2011年   9498篇
  2010年   8334篇
  2009年   5583篇
  2008年   6831篇
  2007年   7823篇
  2006年   142篇
  2005年   1240篇
  2004年   1155篇
  2003年   1199篇
  2002年   556篇
  2001年   108篇
  2000年   192篇
  1999年   74篇
  1998年   105篇
  1997年   63篇
  1996年   73篇
  1995年   25篇
  1994年   25篇
  1993年   23篇
  1992年   17篇
  1991年   25篇
  1988年   16篇
  1969年   24篇
  1968年   43篇
  1967年   33篇
  1966年   42篇
  1965年   44篇
  1964年   12篇
  1963年   28篇
  1962年   22篇
  1961年   18篇
  1960年   30篇
  1959年   35篇
  1958年   37篇
  1957年   36篇
  1956年   34篇
  1955年   63篇
  1954年   68篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
991.
Mixing sand or soil with small pieces of tire is common practice in civil engineering applications. Although the properties of the soil are changed, it is environmentally friendly and sometimes economical. Nevertheless, the mechanical behavior of such mixtures is still not fully understood and more numerical investigations are required. This paper presents a novel approach for the modeling of sand–tire mixtures based on the discrete element method. The sand grains are represented by rigid agglomerates whereas the tire grains are represented by deformable agglomerates. The approach considers both grain shape and deformability. The micromechanical parameters of the contact law are calibrated based on experimental results from the literature. The effects of tire content and confining pressure on the stress–strain response are investigated in detail by performing numerical triaxial compression tests. The main results indicate that both strength and stiffness of the samples decrease with increasing tire content. A tire contact of 40% is identified as the boundary between rubber-like and sand-like behavior.  相似文献   
992.
993.
Magneto-mechanical resonators—magnetically-driven vibration devices—are used in many mechanical and electrical devices. We develop topology optimization (TO) to configure the magnetic fields of such resonators to enable large vibrations under specified current input to be attained. A dynamic magneto-mechanical analysis in the frequency domain is considered where we introduce the surface magnetic force calculated from the Maxwell stress tensor. The optimization problem is then formulated involving specifically the maximization of the dynamic compliance. This formulation is implemented using the solid-isotropic-material-with-penalization method for TO by taking into account the relative permeability, Young’s modulus, and the mass density of the magnetic material as functions of the density function. Through the 2D numerical studies, we confirm that this TO method works well in designing magnetic field patterns and providing matching between the external current frequency and eigenfrequency of the vibrating structure.  相似文献   
994.
Early phase distributed system design can be accomplished using solution spaces that provide an interval of permissible values for each functional parameter. The feasibility property guarantees fulfillment of all design requirements for all possible realizations. Flexibility denotes the size measure of the intervals, with higher flexibility benefiting the design process. Two methods are available for solution space identification. The direct method solves a computationally cheap optimization problem. The indirect method employs a sampling approach that requires a relaxation of the feasibility property through re-formulation as a chance constraint. Even for high probabilities of fulfillment, \(P>0.99\), this results in substantial increases in flexibility, which offsets the risk of infeasibility. This work implements the chance constraint formulation into the direct method for linear constraints by showing that its problem statement can be understood as a linear robust optimization problem. Approximations of chance constraints from the literature are transferred into the context of solution spaces. From this, we derive a theoretical value for the safety parameter \(\varOmega\). A further modification is presented for use cases, where some intervals are already predetermined. A problem from vehicle safety is used to compare the modified direct and indirect methods and discuss suitable choices of \(\varOmega\). We find that the modified direct method is able to identify solution spaces with similar flexibility, while maintaining its cost advantage.  相似文献   
995.
We present a robust optimization framework that is applicable to general nonlinear programs (NLP) with uncertain parameters. We focus on design problems with partial differential equations (PDE), which involve high computational cost. Our framework addresses the uncertainty with a deterministic worst-case approach. Since the resulting min–max problem is computationally intractable, we propose an approximate robust formulation that employs quadratic models of the involved functions that can be handled efficiently with standard NLP solvers. We outline numerical methods to build the quadratic models, compute their derivatives, and deal with high-dimensional uncertainties. We apply the presented approach to the parametrized shape optimization of systems that are governed by different kinds of PDE and present numerical results.  相似文献   
996.
Understanding the flow and mixing of rod-like particles is fundamental because of the widespread use of rods in the process industry. In this paper, discrete element method is used to investigate the flow and mixing of rod-like particles in a horizontal rotating drum, with rod-like particles being modeled by super-ellipsoids. The influence of the aspect ratio of the rod and the rotation speed of the drum on the flow of rod-like particles is studied. The investigation of spherical particles is also included in this paper to reveal the differences between rod-like and spherical particles. The simulation results show that the flow of rods is more intermittent than that of spheres and that there is more intermittent flow for rod-like particles with larger aspect ratios. Both the aspect ratio of the rod and the rotation speed of the drum considerably influence particle mixing. The mixing rate, as quantified by the slope of the variation in the mixing index with respect to drum revolution, increases as rotation speed and aspect ratio decrease. The study of particle orientation indicates that rod-like particles have a preferred orientation during rotation of the drum: the major axis of the rod inclines to be parallel to the end plate of the drum.  相似文献   
997.
We investigate the ability to move of large objects—referred to as intruders—embedded in a granular material and subjected to cyclic loadings. A discrete element method is used to simulate the dynamics response of intruders subjected to a vertical uplift cyclic force, exploring a wide range of loading magnitudes and frequencies. The analysis of the intruder and grains displacements over many cycles reveals three mobility regimes. In the first two regimes, called confined and failure the intruder either do not significantly move or consistently moves upward after each cycles. We introduce a physically based model considering an inertial drag force to rationalise the existence of these regimes depending on the loading frequency and magnitude. We further evidence a third intermediate regime of creep, where intruder trajectories exhibit long periods of confinement punctuated by shorter periods of sustained uplift motion. Finally, we observe unexpected failures at low loading magnitudes and specific frequencies, which we attribute to a process of elasto-inertial resonance. These results highlight the important differences in the mobility of intruders upon constant and cyclic loadings.  相似文献   
998.
Contact dynamics (CD) is a powerful method to solve the dynamics of large systems of colliding rigid bodies. CD can be computationally more efficient than classical penalty-based discrete element methods (DEM) for simulating contact between stiff materials such as rock, glass, or engineering metals. However, by idealizing bodies as perfectly rigid, contact forces computed by CD can be non-unique due to indeterminacy in the contact network, which is a common occurence in dense granular flows. We propose a frictionless CD method that is designed to identify only the unique set of contact forces that would be predicted by a soft particle method, such as DEM, in the limit of large stiffness. The method involves applying an elastic compatibility condition to the contact forces, which maintains no-penetration constraints but filters out force distributions that could not have arisen from stiff elastic contacts. The method can be used as a post-processing step that could be integrated into existing CD codes with minimal effort. We demonstrate its efficacy in a variety of indeterminate problems, including some involving multiple materials, non-spherical shapes, and nonlinear contact constitutive laws.  相似文献   
999.
Phosphorus (P) runoff from livestock waste can trigger algal blooms that adversely affect aquatic life and human health. One strategy to mitigate this problem is to install nutrient recovery technologies that concentrate and mobilize nutrients from nutrient-rich regions to nutrient-deficient ones. We present supply chain design formulations to identify optimal types and locations for P recovery technologies. The formulations capture trade-offs in transportation costs, technology efficiency, investment/operational costs, revenue collected from different recovered products (struvite and nutrient cakes), and environmental impact. Our computational framework is used to analyze the impact of different scenarios for market prices of recovered products, recovery yields, and remediation costs. We find that transportation of waste alone (without any processing) can achieve significant reductions in environmental impact at low cost, but cannot achieve economic sustainability in the long run due to the lack of direct revenue streams. Mechanical separation technologies that recover P in the form of nutrient cakes are low-cost solutions that can achieve high environmental benefits and reduced transportation costs, but revenues are also limited due to low values of the cakes. Struvite crystallization in fluidized beds is found to be a highly attractive option under current struvite prices, but economic sustainability is strongly dependent on yield recoveries (which are currently highly uncertain).  相似文献   
1000.
In this paper, a techno-economic and environmental assessment is performed to compare the stand-alone process and biorefinery ways to produce biodiesel, ethanol and butanol as potential cases for bioenergy production using fresh fruit bunches as raw material. Different levels of integration are considered (e.g., mass and energy integration, non-conventional technologies) along with the analysis of the process scale to determine the economic profitability and environmental impacts of the proposed cases. The results demonstrated that the biodiesel production based on the biorefinery concept has a positive effect on the profitability of the stand-alone process at different scales. The economic results were compared with data reported in the literature. Furthermore, the life cycle analysis of the proposed cases suggested that the deployment of the biorefinery concept at different levels of integration in the oil palm supply chain reduced the environmental impact of the biodiesel production, which was selected as the hotspot of the evaluated cases.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号