首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
化学工业   1篇
建筑科学   1篇
轻工业   1篇
无线电   5篇
一般工业技术   3篇
冶金工业   3篇
自动化技术   1篇
  2012年   1篇
  2010年   1篇
  2008年   3篇
  2006年   2篇
  2005年   1篇
  2004年   1篇
  1996年   2篇
  1993年   1篇
  1989年   1篇
  1978年   2篇
排序方式: 共有15条查询结果,搜索用时 0 毫秒
11.
2010上海世博会是继北京奥运会后,中国展现给世界的又一个惊喜和盛事。它将成为全世界人民心中又一个难忘的体验。  相似文献   
12.
The effects of pre-deposition substrate treatments and gate electrode materials on the properties and performance of high-k gate dielectric transistors were investigated. The performance of O3 vs. HF-last/NH3 pre-deposition treatments followed by either polysilicon (poly-Si) or TiN gate electrodes was systematically studied in devices consisting of HfO2 gate dielectric produced by atomic layer deposition (ALD). High-angle annular dark field scanning transmission electron microscopy (HAADF-STEM) using X-ray spectra and Electron Energy Loss Spectra (EELS) were used to produce elemental profiles of nitrogen, oxygen, silicon, titanium, and hafnium to provide interfacial chemical information and to convey their changes in concentration across these high-k transistor gate-stacks of 1.0–1.8 nm equivalent oxide thickness (EOT). For the TiN electrode case, EELS spectra illustrate interfacial elemental overlap on a scale comparable to the HfO2 microroughness. For the poly-Si electrode, an amorphous reaction region exists at the HfO2/poly-Si interface. Using fast transient single pulse (SP) electrical measurements, electron trapping was found to be greater with poly-Si electrode devices, as compared to TiN. This may be rationalized as a result of a higher density of trap centers induced by the high-k/poly-Si material interactions and may be related to increased physical thickness of the dielectric film, as illustrated by HAADF-STEM images, and may also derive from the approximately 0.5 nm larger EOT associated with polysilicon electrodes on otherwise identical gate stacks.  相似文献   
13.
The emergence of static memory-based field programmable gate arrays (FPGAs) that are capable of being dynamically reconfigured, i.e., partially reconfigured while active, has initiated research into new methods of digital systems synthesis. At present, however, there are virtually no specific CAD tools to support the design and investigation of digital systems using dynamic reconfiguration. This paper reports on an investigation of new CAD tools and the development of a new simulation technique, called dynamic circuit switching (DCS), for dynamically reconfigurable systems. The principles of DCS are presented and examples of its application are described  相似文献   
14.
15.
The electrochemistry of unbuffered and buffered neutral AlCl3-EMIC-MC1 (EMIC =1-ethyl-3-methylimidazolium chloride and MC1= LiCl, NaCl or KCl) room-temperature molten salts was studied at graphitic and nongraphitic electrodes. In the case of the unbuffered 1 : 1 AlCl3 : EMIC molten salt, the organic cation reductive intercalation at about –1.6 V and the AlCl4 anion oxidative intercalation at about +1.8 V were evaluated at porous graphite electrodes. It was determined that the instability of the organic cation in the graphite lattice limits the performance of a dual intercalating molten electrolyte (DIME) cell based on this electrolyte. In buffered neutral 1.1 :1.0:0.1 AIC13: EMIC : MCl (MC1= LiCl, NaCl and KCl) molten salts, the organic cation was intercalated into porous and nonporous graphite electrodes with similar cycling efficiencies as the unbuffered 1 : 1 melt; however, additional nonintercalating processes were also found to occur between 1 and –1.6 V in the LiCl and NaCl systems. A black electrodeposit, formed at –1.4 V in the LiCl buffered neutral melt, was analysed with X-ray photoelectron spectroscopy and X-ray diffraction and was found to be composed of LiCl, metallic phases containing lithium and aluminium, and an alumina phase formed from reaction with the atmosphere. A similar film appears to form in the NaCl buffered neutral melt, but at a much slower rate. These films are believed to form by reduction of the AlCl4 anion, a process promoted by decreasing the ionic radius of the alkali metal cation in the molten salt. The partially insulating films may limit the usefulness of the LiCl and NaCl buffered neutral melts as electrolytes for rechargeable graphite intercalation anodes and may interfere with other electrochemical processes occurring negative of –1 V.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号