首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   750802篇
  免费   12263篇
  国内免费   2090篇
电工技术   13240篇
综合类   691篇
化学工业   115590篇
金属工艺   28609篇
机械仪表   21669篇
建筑科学   18550篇
矿业工程   3802篇
能源动力   19679篇
轻工业   68676篇
水利工程   7665篇
石油天然气   14060篇
武器工业   56篇
无线电   82318篇
一般工业技术   145129篇
冶金工业   146217篇
原子能技术   15368篇
自动化技术   63836篇
  2021年   6976篇
  2020年   5242篇
  2019年   6497篇
  2018年   11263篇
  2017年   11035篇
  2016年   11725篇
  2015年   8145篇
  2014年   13038篇
  2013年   34912篇
  2012年   20584篇
  2011年   27460篇
  2010年   22040篇
  2009年   24465篇
  2008年   24979篇
  2007年   24387篇
  2006年   21269篇
  2005年   19582篇
  2004年   18626篇
  2003年   18220篇
  2002年   17572篇
  2001年   17417篇
  2000年   16267篇
  1999年   17046篇
  1998年   44339篇
  1997年   31556篇
  1996年   24182篇
  1995年   17992篇
  1994年   15737篇
  1993年   15461篇
  1992年   11213篇
  1991年   10715篇
  1990年   10369篇
  1989年   10206篇
  1988年   9680篇
  1987年   8505篇
  1986年   8409篇
  1985年   9489篇
  1984年   8911篇
  1983年   8037篇
  1982年   7562篇
  1981年   7800篇
  1980年   7421篇
  1979年   7177篇
  1978年   7068篇
  1977年   8529篇
  1976年   11372篇
  1975年   6253篇
  1974年   5851篇
  1973年   5929篇
  1972年   4999篇
排序方式: 共有10000条查询结果,搜索用时 199 毫秒
71.
The influence of the microstructure on the corrosion rate of three monolithic SiC samples in FLiNaK salt at 900 °C for 250 h was studied. The SiC samples, labeled as SiC-1, SiC-2, and SiC-3, had corrosion rates of 0.137, 0.020, and 0.043 mg/cm2h, respectively. Compared with grain size and the presence of special grain boundaries (i.e., Σ3), the content of high-angle grain boundaries (HAGBs) appeared to have the strongest influence on the corrosion rate of SiC in FLiNaK salt, since the corrosion rate increased six times as the concentration of high-angle grain boundaries increased from 19 to 32% for SiC-2 and SiC-1, respectively. These results stress the importance of controlling the content of HAGBs during the production process of SiC.  相似文献   
72.
A new TiO2-containing bioactive glass and glass-ceramics based on 50SiO2-(45-X)CaO-(XTiO2)-5P2O5 system was designed using a sol–gel technique (where X = 5, 7.5 and 10 wt %). The roles of the crystallization behavior and physicochemical characteristics of the designed glass and glass-ceramics which were played in the introduction of TiO2 substitutions were investigated. Moreover, cell proliferation and differentiation were evaluated against human osteosarcoma cells (Saos-2). The TiO2/CaO replacements led to the formation of a stronger glass structure and thus increased thermal parameters and the chemical stabilization of the designed materials. The FTIR data confirmed the existence of Ti within the glass and glass-ceramics samples, and no remarkable effect on their chemical integrity was observed. The XRD patterns indicated that calcium-containing minerals, including Ca2SiO4,Ca3(PO4)2, Ca(Ti,Si)O5, CaTiSiO5, and Ca15(PO4)2·(SiO4)6 phases were developed as a role of structure/texture under the applied heat-treatment. The results of the cytotoxicity test proved that a safe sample dose is 12–50 μg/ml, at which cell viability is ≥ 85%. The cell differentiation determined by ALP test proved the superiority of glass-ceramics compared with their native glasses. Therefore, the obtained materials could be safely used as novel biocompatible materials for the regeneration of bone tissue.  相似文献   
73.
One of the drawbacks of fusible clays is the narrow sintering interval due to a sharp increase in the amount of iron-silicate melt at a temperature of 1000–1100 °C, which hardens in the form of a glass phase upon cooling. This leads to a relatively low mechanical strength of the calcined samples and causes the danger of melting the granular material surface from such clays during the firing process. To increase the strength of samples of fusible clays, the influence of diabase and granitoid rocks was considered. It was found that the strengthening effect of diabase and granitoid rock additives in an amount of 20–50% in a mixture with fusible clay is due to an increase of total content of the crystalline phase (mullite, cristobalite and residual quartz) from 18–20% in clays without additives to 22–28 % - in mixtures with diabase and to 28–34% - with granitoid additives) at a temperature of 1050–1100 °C. This increase is due to the activation of synthesis processes of secondary mullite and crystallization from alkali-rich feldspar melt of amorphous silica, released from the structure of clay minerals. The established influence of the igneous rocks used made it possible to develop compositions and propose process flow sheet for producing aluminosilicate proppants based on fusible clays. The use of granitoid and diabase rocks in an amount of 20–70% with fusible clays produces lightweight aluminosilicate proppants with bulk density of 1.40–1.46 g/cm3 at temperature range of 1050–1100 °C, which can endure destructive pressures up to 34.5–52 MPa.  相似文献   
74.
Theoretical Foundations of Chemical Engineering - The corona onset voltage is an important operating parameter in the electrostatic precipitation of nanoparticulate, however, its experimental...  相似文献   
75.
Trofimova  Elena G.  Lomovsky  Oleg I. 《SILICON》2021,13(2):433-439
Silicon - The products of solid-phase mechanochemical interaction between pyrocatechol and silicon dioxide yielding a powdered composite were studied using a number of physicochemical methods. This...  相似文献   
76.
Antimony triselenide (Sb2Se3) nanoflake-based nitrogen dioxide (NO2) sensors exhibit a progressive bifunctional gas-sensing performance, with a rapid alarm for hazardous highly concentrated gases, and an advanced memory-type function for low-concentration (<1 ppm) monitoring repeated under potentially fatal exposure. Rectangular and cuboid shaped Sb2Se3 nanoflakes, comprising van der Waals planes with large surface areas and covalent bond planes with small areas, can rapidly detect a wide range of NO2 gas concentrations from 0.1 to 100 ppm. These Sb2Se3 nanoflakes are found to be suitable for physisorption-based gas sensing owing to their anisotropic quasi-2D crystal structure with extremely enlarged van der Waals planes, where they are humidity-insensitive and consequently exhibit an extremely stable baseline current. The Sb2Se3 nanoflake sensor exhibits a room-temperature/low-voltage operation, which is noticeable owing to its low energy consumption and rapid response even under a NO2 gas flow of only 1 ppm. As a result, the Sb2Se3 nanoflake sensor is suitable for the development of a rapid alarm system. Furthermore, the persistent gas-sensing conductivity of the sensor with a slow decaying current can enable the development of a progressive memory-type sensor that retains the previous signal under irregular gas injection at low concentrations.  相似文献   
77.
Chemical and Petroleum Engineering - The processes of separation of impurities of particles of different sizes are analyzed under conditions of irregularity of structural and kinematic parameters...  相似文献   
78.
Traditional West African pearl millet couscous products are popular; however, their preparation is laborious, time-consuming and energy-demanding, involving agglomeration, steaming, drying and sieving steps. In this study, a process was developed to produce millet couscous using a high pressure, high temperature and low-cost single-screw extruder. The innovation was to directly process the cooked low-moisture extrudate to a couscous product by drying and milling to the appropriate particle size (ranging between 1 and 2 mm). Throughput for the traditional process as prepared for commercial sale is 50 kg per day, but with the same amount of labour, the extrusion process yields ~350 kg per day. A consumer sensory study held in Niamey (Niger) showed that the extruded millet couscous was comparable to traditional couscous, though this was dependent on selection of the proper millet variety. This novel extrusion process could stimulate small- to medium-scale manufacturing of couscous and couscous-type products in West Africa.  相似文献   
79.
Herein, we report the photosensing property of CdS thin films. CdS thin films were coated onto glass substrates via a spray pyrolysis method using different spray pressures. Prepared films were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and optical and photoluminescence spectroscopy. XRD analysis demonstrated the growth of crystalline CdS films with crystallite sizes varying from 26 to 29 nm depending on the pressure. The SEM and EDAX analyses revealed nearly-stoichiometric CdS films with smooth surfaces and slight variation in grain morphology due to pressure changes. Optical measurements showed a direct bandgap varying from 2.37 eV to 2.42 eV due to pressure changes. A photodetector was also fabricated using the grown CdS films; the fabricated photodetector exhibited good performance depending on the spray pressure. A spray pressure of 1.5 GPa resulted in high photoresponsivity and external quantum efficiency.  相似文献   
80.
The corrosion mechanisms of T24, T92, VM12, and AISI 304 steels are studied under the influence of NaCl–KCl, NaCl–Na2SO4, and KCl–K2SO4 salt mixtures in a dry air atmosphere at 650°C for 15 days. NaCl–KCl was the most aggressive deposit and AISI 304 stainless steel exhibited the highest corrosion resistance. There was no relation between the Cr content of the ferritic steels and their corrosion resistance in NaCl–KCl. In contrast, the resistance of high-Cr steels was better when exposed to NaCl–Na2SO4 and KCl–K2SO4. The high-Cr and the low-Cr steels were more susceptible to NaCl–Na2SO4 and to KCl–K2SO4, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号