首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   682195篇
  免费   9032篇
  国内免费   1604篇
电工技术   12230篇
综合类   677篇
化学工业   101038篇
金属工艺   30838篇
机械仪表   22287篇
建筑科学   15702篇
矿业工程   4124篇
能源动力   16642篇
轻工业   53252篇
水利工程   7919篇
石油天然气   15559篇
武器工业   43篇
无线电   73350篇
一般工业技术   138839篇
冶金工业   125738篇
原子能技术   15393篇
自动化技术   59200篇
  2021年   5831篇
  2020年   4265篇
  2019年   5517篇
  2018年   14647篇
  2017年   14847篇
  2016年   13029篇
  2015年   6936篇
  2014年   11160篇
  2013年   28336篇
  2012年   18871篇
  2011年   28660篇
  2010年   23670篇
  2009年   25123篇
  2008年   25423篇
  2007年   26458篇
  2006年   18221篇
  2005年   18760篇
  2004年   17289篇
  2003年   16837篇
  2002年   15445篇
  2001年   15212篇
  2000年   14258篇
  1999年   14720篇
  1998年   37445篇
  1997年   26281篇
  1996年   20034篇
  1995年   15029篇
  1994年   13104篇
  1993年   12880篇
  1992年   9426篇
  1991年   8979篇
  1990年   8908篇
  1989年   8592篇
  1988年   8076篇
  1987年   7266篇
  1986年   7175篇
  1985年   7821篇
  1984年   7387篇
  1983年   6636篇
  1982年   6277篇
  1981年   6458篇
  1980年   6150篇
  1979年   6158篇
  1978年   6108篇
  1977年   7013篇
  1976年   9189篇
  1975年   5398篇
  1974年   5165篇
  1973年   5300篇
  1972年   4488篇
排序方式: 共有10000条查询结果,搜索用时 984 毫秒
951.
Presents protocols for determining processor membership in asynchronous distributed systems that are subject to processor and communication faults. These protocols depend on the placement of a total order on broadcast messages. The types of systems for which each of these protocols is applicable are characterized by the properties of the communication mechanisms and by the availability of stable storage. In the absence of stable storage or of a mechanism for distinguishing promptly delivered messages, the authors show that no membership protocol can exist. They also discuss their experience in implementing these membership protocols  相似文献   
952.
Considers the use of massively parallel architectures to execute a trace-driven simulation of a single cache set. A method is presented for the least-recently-used (LRU) policy, which, regardless of the set size C, runs in time O(log N) using N processors on the EREW (exclusive read, exclusive write) parallel model. A simpler LRU simulation algorithm is given that runs in O(C log N) time using N/log N processors. We present timings of this algorithm's implementation on the MasPar MP-1, a machine with 16384 processors. A broad class of reference-based line replacement policies are considered, which includes LRU as well as the least-frequently-used (LFU) and random replacement policies. A simulation method is presented for any such policy that, on any trace of length N directed to a C line set, runs in O(C log N) time with high probability using N processors on the EREW model. The algorithms are simple, have very little space overhead, and are well suited for SIMD implementation  相似文献   
953.
Multicast communication, in which the same message is delivered from a source node to an arbitrary number of destination nodes, is being increasingly demanded in parallel computing. System supported multicast services can potentially offer improved performance, increased functionality, and simplified programming, and may in turn be used to support various higher-level operations for data movement and global process control. This paper presents efficient algorithms to implement multicast communication in wormhole-routed direct networks, in the absence of hardware multicast support, by exploiting the properties of the switching technology. Minimum-time multicast algorithms are presented for n-dimensional meshes and hypercubes that use deterministic, dimension-ordered routing of unicast messages. Both algorithms can deliver a multicast message to m-1 destinations in [log 2 m] message passing steps, while avoiding contention among the constituent unicast messages. Performance results of implementations on a 64-node nCUBE-2 hypercube and a 168-node Symult 2010 2-D mesh are given  相似文献   
954.
955.
The bounded disorder file organization proposed by W. Litwin and D.B. Lomet (1987) uses a combination of hashing and tree indexing. Lomet provided an approximate analysis with the mention of the difficulty involved in exact modeling of data nodes, which motivated this work. In an earlier paper (M.V. Ramakrishna and P. Mukhopadhyay, 1988) we provided an exact model and analysis of the data nodes, which is based on the solution of a classical sequential occupancy problem. After summarizing the analysis of data nodes, an alternate file growth method based on repeated trials using universal hashing is proposed and analyzed. We conclude that the alternate file growth method provides simplicity and significant improvement in storage utilization  相似文献   
956.
In a fault-tolerant distributed system, different non-faulty processes may arrive at different values for a given system parameter. To resolve this disagreement, processes must exchange and vote upon their respective local values. Faulty processes may attempt to inhibit agreement by acting in a malicious or “Byzantine” manner. Approximate agreement defines one form of agreement in which the voted values obtained by the non-faulty processes need not be identical. Instead, they need only agree to within a predefined tolerance. Approximate agreement can be achieved by a sequence of convergent voting rounds, in which the range of values held by non-faulty processes is reduced in each round. Historically, each new convergent voting algorithm has been accompanied by ad-hoc proofs of its convergence rate and fault-tolerance, using an overly conservative fault model in which all faults exhibit worst-case Byzantine behavior. This paper presents a general method to quickly determine convergence rate and fault-tolerance for any member of a broad family of convergent voting algorithms. This method is developed under a realistic mixed-mode fault model comprised of asymmetric, symmetric, and benign fault modes. These results are employed to more accurately analyze the properties of several existing voting algorithms, to derive a sub-family of optimal mixed-mode voting algorithms, and to quickly determine the properties of proposed new voting algorithms  相似文献   
957.
This paper describes several loop transformation techniques for extracting parallelism from nested loop structures. Nested loops can then be scheduled to run in parallel so that execution time is minimized. One technique is called selective cycle shrinking, and the other is called true dependence cycle shrinking. It is shown how selective shrinking is related to linear scheduling of nested loops and how true dependence shrinking is related to conflict-free mappings of higher dimensional algorithms into lower dimensional processor arrays. Methods are proposed in this paper to find the selective and true dependence shrinkings with minimum total execution time by applying the techniques of finding optimal linear schedules and optimal and conflict-free mappings proposed by W. Shang and A.B. Fortes  相似文献   
958.
A new approach is given for scheduling a sequential instruction stream for execution “in parallel” on asynchronous multiprocessors. The key idea in our approach is to exploit the fine grained parallelism present in the instruction stream. In this context, schedules are constructed by a careful balancing of execution and communication costs at the level of individual instructions, and their data dependencies. Three methods are used to evaluate our approach. First, several existing methods are extended to the fine grained situation. Our approach is then compared to these methods using both static schedule length analyses, and simulated executions of the scheduled code. In each instance, our method is found to provide significantly shorter schedules. Second, by varying parameters such as the speed of the instruction set, and the speed/parallelism in the interconnection structure, simulation techniques are used to examine the effects of various architectural considerations on the executions of the schedules. These results show that our approach provides significant speedups in a wide-range of situations. Third, schedules produced by our approach are executed on a two-processor Data General shared memory multiprocessor system. These experiments show that there is a strong correlation between our simulation results, and these actual executions, and thereby serve to validate the simulation studies. Together, our results establish that fine grained parallelism can be exploited in a substantial manner when scheduling a sequential instruction stream for execution “in parallel” on asynchronous multiprocessors  相似文献   
959.
A synchronizer is a compiler that transforms a program designed to run in a synchronous network into a program that runs in an asynchronous network. The behavior of a simple synchronizer, which also represents a basic mechanism for distributed computing and for the analysis of marked graphs, was studied by S. Even and S. Rajsbaum (1990) under the assumption that message transmission delays and processing times are constant. We study the behavior of the simple synchronizer when processing times and transmission delays are random. The main performance measure is the rate of a network, i.e., the average number of computational steps executed by a processor in the network per unit time. We analyze the effect of the topology and the probability distributions of the random variables on the behavior of the network. For random variables with exponential distribution, we provide tight (i.e., attainable) bounds and study the effect of a bottleneck processor on the rate  相似文献   
960.
We consider the design problem for a class of discrete-time and continuous-time neural networks. We obtain a characterization of all connection weights that store a given set of vectors into the network, that is, each given vector becomes an equilibrium point of the network. We also give sufficient conditions that guarantee the asymptotic stability of these equilibrium points.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号