首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   140篇
  免费   7篇
  国内免费   1篇
电工技术   4篇
化学工业   44篇
金属工艺   7篇
机械仪表   1篇
建筑科学   10篇
能源动力   2篇
轻工业   5篇
无线电   16篇
一般工业技术   28篇
冶金工业   3篇
原子能技术   3篇
自动化技术   25篇
  2023年   10篇
  2022年   3篇
  2021年   8篇
  2020年   7篇
  2019年   7篇
  2018年   10篇
  2017年   1篇
  2016年   5篇
  2015年   5篇
  2014年   8篇
  2013年   9篇
  2012年   16篇
  2011年   12篇
  2010年   11篇
  2009年   9篇
  2008年   6篇
  2007年   8篇
  2006年   4篇
  2005年   1篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1984年   2篇
排序方式: 共有148条查询结果,搜索用时 15 毫秒
31.
Astrocytes are the principle macroglial brain cells. They are activated by different stressors and brain injuries. Quantum dots (QDs) can cause oxidative stress. This study shows a real-time imaging of primary cortical cultures and assessment of QD-induced activation of astrocytes in the brains of transgenic mice with the luciferase gene driven by the murine astrocyte promoter. This approach may be widely applicable for assessing the astroglia/tissue response to nanoparticles in live animals.  相似文献   
32.
33.
34.
35.
We investigate different micro-powders that can be used as base materials for THz lenses fabricated by compression molding. For this application materials with a very weak THz absorbance and low dispersion are required. By measuring the THz absorption coefficient and refractive index of pellets pressed from the different micro-powders, we identify several materials that are well suited for the fabrication of compression molded THz lenses (CMLs). In addition, a considerable range of the refractive index is covered by the samples, which will allow for the fabrication of CMLs with different focal lengths for one and the same lens design.  相似文献   
36.
37.
Superplasticity in the alloyed high carbon-steel 140NiCr16-6 with phosphorus additions and a fine grained microdupiex structure – containing cementite in volume fractions of 22 % (Fe,Cr,Ni)3C, particle size of about 1 μm and with a medium ferrite grain size of about 2 μm – has been investigated in the temperature regime of 550 to 675°C and in the strain rate range of 10?5 to 5 · 10?2 s?1. Maximum strain rate exponents of m = 0,45 at 675°C with strain rates of the order of 10?4 s?1 have been determined. Maximum superplastic elongations of about 700 % were detected. At higher strain rates of 10?3 s?1 superplastic elongations of about 570 % were achieved. At relatively low test temperatures of 550°C elongations up to 230 % were recorded. The activation analysis in the temperature regime of 550 to 650°C show an activation energy for superplastic flow of 250 ± 20 kJ/mol. This is in agreement with the activation energy for lattice self diffusion of iron in α-iron. Above 650°C the activation energy decreases to 70 kJ/mol. This is due to a stress induced decrease in the eutectoid α-γ-transformation temperature from 685°C to somewhat lower temperatures during superplastic deformation. The superplastic deformability (m > 0.3) of this steel in a wide strain rate range at relatively low temperatures above 550°C allows near net shape forming of complex parts applying low flow stresses.  相似文献   
38.
Voltage control of magnetism through electric field‐induced oxygen motion (magneto‐ionics) could represent a significant breakthrough in the pursuit for new strategies to enhance energy efficiency in magnetically actuated devices. Boosting the induced changes in magnetization, magneto‐ionic rates and cyclability continue to be key challenges to turn magneto‐ionics into real applications. Here, it is demonstrated that room‐temperature magneto‐ionic effects in electrolyte‐gated paramagnetic Co3O4 films can be largely increased both in terms of generated magnetization (6 times larger) and speed (35 times faster) if the electric field is applied using an electrochemical capacitor configuration (utilizing an underlying conducting buffer layer) instead of placing the electric contacts at the side of the semiconductor (electric‐double‐layer transistor‐like configuration). This is due to the greater uniformity and strength of the electric field in the capacitor design. These results are appealing to widen the use of ion migration in technological applications such as neuromorphic computing or iontronics in general.  相似文献   
39.
Cognition, Technology & Work - A correction to this paper has been published: https://doi.org/10.1007/s10111-021-00680-1  相似文献   
40.
Plant development strongly relies on environmental conditions. Growth of plants in Biological Life Support Systems (BLSS), which are a necessity to allow human survival during long-term space exploration missions, poses a particular problem for plant growth, as in addition to the traditional environmental factors, microgravity (or reduced gravity such as on Moon or Mars) and limited gas exchange hamper plant growth. Studying the effects of reduced gravity on plants requires real or simulated microgravity experiments under highly standardized conditions, in order to avoid the influence of other environmental factors. Analysis of a large number of biological replicates, which is necessary for the detection of subtle phenotypical differences, can so far only be achieved in Ground Based Facilities (GBF). Besides different experimental conditions, the usage of a variety of different plant growth chambers was a major factor that led to a lack of reproducibility and comparability in previous studies. We have developed a flexible and customizable plant growth chamber, called ARAbidopsis DISH (ARADISH), which allows plant growth from seed to seedling, being realized in a hydroponic system or on Agar. By developing a special holder, the ARADISH can be used for experiments with Arabidopsis thaliana or a plant with a similar habitus on common GBF hardware, including 2D clinostats and Random Positioning Machines (RPM). The ARADISH growth chamber has a controlled illumination system of red and blue light emitting diodes (LED), which allows the user to apply defined light conditions. As a proof of concept we tested a prototype in a proteomic experiment in which plants were exposed to simulated microgravity or a 90° stimulus. We optimized the design and performed viability tests after several days of growth in the hardware that underline the utility of ARADISH in microgravity research.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号